《攝影之聲》線上專題推出!
《攝影之聲》關鍵字線上專題系列,每期由客座主編規劃影像與視覺領域的重要詞彙,邀請多位研究者共筆,透過不同角度詮釋書寫當代影像論題。本期由影像研究者謝佩君擔任客座主編,首期主題「家常任務:關於數位視覺政治性的關鍵詞」,每周二、四推出更新,歡迎追蹤閱讀!
專題連結|https://bit.ly/vop-keyword
███ 家常任務:關於數位視覺政治性的關鍵詞
導言──謝佩君|客座主編
創立於世紀之末的美國外送平台Seamless,名實相符地是一則新自由主義式社會關係的寓言。以無縫接軌(seamless)作為品牌精神,和台灣現正風行的所有外送程式一樣,主打使用者從慾望到滿足過程的一氣呵成:我們可以躺著滑動手指於各家餐廳的菜色圖片間,點選、付款,接著等待外送員(gig worker)將餐點無接觸地送至家門外後,再附上一張即拍的照片作為送抵的證明。簡單又直覺,我們沒有發現線上點餐的自由,僅是將個體活動時空壓縮地複寫至市場──我們連躺著放空都可以消費,而零工經濟(Gig Economy)成就於我們壓榨自己的休閒時間(或是因經濟狀況犧牲休閒時間),在沒有基本工時、工會或保險的狀態下製造並滿足需求。從無縫接軌的角度來看,影像是「以時間根絕空間」障礙的資本共犯,既是索引也召喚著或點或滑或長按的反射動作,當它平順運行時我們感覺不到它的存在,一如無縫接軌作為新自由主義的理性與意識形態。
「學術是關於認識世界的普遍任務」,批判與媒介理論學者沃克(McKenzie Wark)曾這麼說過。她將普遍定義為尋常、共享,甚至是粗鄙的形容詞,任務是時而帶著遊戲性質的勞動,而認識作為動詞,既是普遍之所以可能的條件,也是一種饒富趣味的任務。借鏡沃克將學術祛魅並重新賦予其社會實踐動能的論述,本專題「#家常任務:關於數位視覺政治性的關鍵詞」試圖將普遍一詞的公共意義擴延並轉化至家常,除了在疫情下居家辦公(Work from Home)成為新社會基準、公與私範疇並置且模糊的時刻,思考以家常為原點作為公眾實踐的可能外,也企圖以家常一字的意涵──日常、取材平易且頻繁使用──對上述影像無縫接軌地媒介於公於私的日常生活,提供十二個出自慣常口語的詞彙作為批判工具。因此,「家常任務」試圖認識的世界,不只是我們以第一人稱視角,以智慧型手機、筆電或平板,接受通知、點取、瀏覽並溝通交換的世界;同時也針對充斥於我們生活中之語言:以線上、視訊或梗圖等作為條件的日常經驗。例如,小說家言叔夏在〈回家的方式〉一文裡討論居家辦公,將進入Google Meet前的麥克風與鏡頭測試比擬作玄關的鏡子,視訊鏡頭下和鏡子前的我們一樣忍不住有著整理儀容的反射動作,毫不反抗地將自己投入畫面之中成為等待定義的主體。
馬克思主義文化批評家威廉斯(Raymond Williams)在1975年出版《關鍵詞:文化與社會的詞彙》(Keywords: A Vocabulary of Culture and Society)的序言裡,提及寫作緣由的個人層面:當他於二戰結束返回劍橋時,遇到也甫從前線歸來的朋友,兩人不約而同地,對眼前的新世界說出:「事實上,我們不再說著相同的語言。」世界大戰造成的斷裂,在短短四年半裡,急遽體現在對話中同一詞語的不同價值與興趣導向。援引威廉斯的體察,「家常任務」關注的是何以在新千禧後:「我們總說著相同的語言。」在這20多年裡,為什麼如數位、媒介或影像等詞彙仿若通貨,跨越地理疆界、國境文化,成為我們可交換可溝通的共享語言?如何理解這加速度過程中,語言流轉於多民族、多文化間之抵抗與連貫性、干擾或對比的歷史?從這方面來說,語言也顯露了它與生俱來的異質性;換言之,從來沒有純血的語言。
因此,本專題的七位作者邀請讀者在這無縫的語言生產鏈按下暫停鍵,以詞彙作為問題的切入點,透過家常的例子檢視數位世界的歷史與其概念流變,並剖析數位技術與影像生產、詮釋間的相互關係;或者,更重要地,以詞彙為單位,進行一場認識數位技術與影像生產政治性的練習:當數位物件同質化在我們眼前,它們是如何被渴求、辨識且描述?並進而被定義、處理以及認識?透過上述的提問,「家常任務」企圖承接威廉斯在上世紀的目標:以關鍵詞闡明文化如何是歷史的表徵,意即,在「創造屬於我們的語言與歷史時」,探尋一組詞彙──「去改變任何必須的改變」。
_____________
Voices of Photography 攝影之聲
vopmagazine.com
_____________
#影像 #數位 #科技與技術 #新自由主義 #數據視覺化
#要素型媒介 #感覺中樞 #介面 #解殖 #文化分析 #平台 #投影
#謝佩君 #王柏偉 #徐詩雨 #陳琬尹 #楊子樵 #鄭安齊 #關鍵詞
交換理論例子 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
交換理論例子 在 元毓 Facebook 的最佳解答
【後疫情時代中國面對的經濟環境】
本文嘗試用一個廣角、簡略但直入重點的方式分析中國在疫情之後所面對的全球經濟環境。
國家競爭力的經濟學概念與中國縣競爭制度
根據經濟學比較優勢定理,國家之間的競爭始終被比較成本所局限。而在分析國家競爭力上,我摒棄華而不實的哈佛商學院Michael Poter的鑽石競爭理論,回歸最基本但正確的經濟學成本概念,其中尤受諾貝爾經濟學獎得主R. Coase的「The Problem of Social Costs」鴻文啓發:
國家競爭成本 = 直接生產成本 + 間接生產成本 + 制度費用
特別說明我所謂的「間接生產成本」更接近上頭成本,本身除了牽涉到整體租值外也會涉及到產業乃至於社會國家的路徑依賴。
在相同供應層面,某國是否可以用更低成本下滿足同樣的需求,以及是否可以善用比較優勢定理。後者包含了前者的同時,也是國家與國家之間的角色不單純只是競爭關係,而是有更多供需關係。後者之所以尤為重要在於「買方與賣方永遠不存在競爭關係」。因此在供應鏈上彼此依賴的買賣雙方國家,依賴程度越深入越廣泛,則敵對的成本將等比級數增加。
換個角度來說,Covid-19疫情本身帶來上述三種成本的同步增加。這也意味著在疫苗逐漸普及的後疫情時代,能夠以更快速地降低上述三種成本的國家將在新一輪全球經濟重新平衡的過程中取得更佳的競爭優勢地位。
在張五常「The Economic Structure of China」一書闡述的中國曾有的1990年代末到2010年間之縣競爭制度下,中國借此享受人類近代少有的超低制度費用與間接生產成本,佐以原本享有的人口紅利帶來的在中低階工廠流水線上較低直接生產成本,中國製造橫掃全世界九成以上的中低階工業領域。
但隨著中國中央政府出台勞動法與加強反托拉斯管制與大大小小的管制措施,上述獨有的縣競爭制度似乎已不復存在。這也為疫情後面對全世界新的經濟環境中國是否還具有經濟學謂「低制度費用」的高彈性與快速適應力埋下變數。
瞭解這個重要局限條件改變後,我們來看看疫情後中國所面對的全球經濟挑戰有哪些。
1 全球通貨膨脹可能帶給中國輸入性通膨
美國建國以來90%以上的M0貨幣發行量是在最近15年內產生,尤其疫情後Fed諸多舉措都可說是「瘋狂印鈔」,在世界多數原物料與貿易均以美元定價與結算的前提下,世界性通貨膨脹必然來到。
站在2021年5月這個時間點看,美國股市、房市、債市與全世界的大宗期貨、能源價格都受到局部性通膨影響,尤其主要農產品、金屬期貨價格多在52周以來新高。(見圖)
(美國M0通貨)
(美國股市)
(美國房市)
(美國債市)
(石油價格)
中國改革開放以來相當長一段時間貨幣匯率政策緊盯美元。2010年代以後雖然改盯一籃子貨幣,但明眼人都看得出美元的比重。故,在美元瘋狂印鈔的環境下,人民幣相應的輸入性通膨也必然發生。
這一塊我們可以預測,在貨幣學 Impossible trinity law的局限,以及中國對人民幣國際化的追求下,中國人民銀行應將在近年內逐步脫鈎對美元匯率的政策,同時部分放寬外匯管制,以得到更多貨幣主權。
同時取消或降低部分關稅,以及放寬戶口管制,都可以是中國政府提高國家競爭力可能採取的措施。
二、 全球局部地區將因疫情影響出現糧食危機
很明顯Covid-19疫情影響了糧食生產與輸布,全球局部地區的糧食危機已經開始出現。根據聯合國2020年糧食安全報告估計到2020年底全球因疫情而陷入經濟衰退與飢餓的人口數達8300萬~1.32億人。其引發的糧食價格增長將加重中國輸入性通膨下,百姓生活的負擔
中國家戶支出30%花費在食物品項,又中國國內大豆需求90%依賴進口滿足,因此可預見中國的飼料與肉品市場價格恐將上揚且吃緊。
(中國主要糧食供需狀況)
全球能源市場也會因疫情與之前負油價事件影響一段時間內失去部分供給彈性,意味著能源市場價格伴隨通膨因素影響的上揚也是可以預期,這一塊同樣也會加重中國未來將面對的輸入性通膨壓力。
因此我們會看到中國在人民幣國際化推廣上會施以更大力道,例如與更多國家簽訂貨幣清算與貨幣交換協議,嘗試在糧食/能源品項上更多地採人民幣定價結算。如此方可在不過度犧牲中國世界供應煉地位的前提下,減少輸入性通膨對人民的衝擊,尤其是輸入性通膨下中國國內資本投資的資源錯置現象將可以得到一定程度約束。當然這部分中國政府應該還會採取價格管制或其他市場管制措施相佐之,但政府干預與介入本身又會帶來更多訊息費用、交易費用,甚至政府本身就成為資源錯置的問題根本,也是極為可能。這些都是身為投資人的我們值得持續觀察與因應。
三、 中美衝突與戰爭風險提高
如前述,國家邊際競爭成本,尤其邊際間接生產成本與邊際制度費用,增加速率大過他國之速率,則一國之國力衰退,或更精准地說,國家相對競爭優勢衰退。反之則可視為國家相對競爭優勢增加。
在人民幣國際化過程將直接與美元產生競爭關係且削弱美國對全球徵收「美元稅」的能力,經濟邏輯上的效果是:2008年金融危機後的QE之所以沒有在美國發生嚴重通膨,正是因為美元在國際貿易與國際金融的霸主地位可以對全球抽取美元稅,意味著美國可以將貨幣濫發帶來的經濟成本移轉給全世界承擔,其中以世界貿易額佔比越高者承擔越多,故身為世界第一大商品出口國的中國自然也承擔大部分苦果,這也是為何我長時間以來主張美元的地位相當程度是由中國支撐。
而在人民幣競爭之下(我們假設人民幣國際化真取得成效),美國不再能輕易移轉自身國家競爭成本給全世界時,通貨膨脹將回歸隨著貨幣發行量增長而提高,這對美國而言代表聯邦政府與州政府等一系列債券、連動債務的利息支出成本將提高,未來借貸成本也將提高。在一定程度上,美國政府或州政府可能因此停擺,甚或我們會看到州政府、市政府因此破產。
因此美國必然會嘗試在各方面阻止之。
提高上述中國的國家邊際競爭成本也無可避免會是美國未來數十年的整體戰略目標。
所以我們看到美國從President Trump任期開始,嘗試尋找各種可以提高中國國家邊際競爭成本的手段。
然而在當今真實世界供應煉、服務煉、金流、資訊流高度分工交雜的局限條件下,我推斷任何一任美國政府、智庫都難以清楚釐清自身採取的任何競爭戰略是否會帶來意料之外的後果(unintentional consequences)。
a 舉例來說,比如美國政客錯誤判斷關稅手段制裁中國會有效,於是我們看到Trump任期貿易戰初期就是違背WTO規範,片面無理對中國出口商品加重關稅或其他非關稅貿易手段。
然而真正懂經濟學邏輯者看法多如我當時寫下的預判一樣 — 如果美國以關稅手段要抑制中國出口經濟,但關稅提高幅度不夠大不夠全面的話,則中美之間的貿易逆差狀況不但不會縮減,反而在某些不同彈性系數之下會增加。(見圖)
(中國出口美國統計圖)
反之,美國經濟將因自身對中國的片面關稅障礙而受創。
更進一步,若美國政客傻到真的將制裁關稅提到夠高,足以發生抑制中國出口額的效果,則美國經濟將必須付出重大代價,其中包括美元地位將大幅動搖。如前述貨幣政策問題,不但聯邦政府利息支出將壓垮政府財政,州政府乃至市政府破產潮亦不遠。故,我們看到即便是Trump也被迫停止更瘋狂的關稅壁壘措施。
b 再以半導體產業的光刻機為例,美國施壓荷蘭ASML禁止出貨中國廠商已經付費採購的光刻機,其結果反而是給中國光刻機或EDA廠商創造市場,協助排除了原本ASML強力的競爭。從經濟學角度來看這是一件很諷刺事情。
這是因為全球光刻機市場是一個高度技術集成的天然寡頭壟斷市場,除非有類似當年ASML與日本佳能之間的技術彎道超車(浸潤式UV光刻技術)特殊情況發生,否則後來者都會因為技術認證與攻克的巨大前期投資成本而被排除於競爭之外。
然而,從經濟學競爭的角度看,美國禁止ASML對中國出口,結果反而是讓中國半導體製造廠被迫轉向投資與採購其他中國光刻機供應商,使得原本在市場上幾乎無競爭力的後者,因美國的禁令創造的「競爭真空」環境而有了成長空間。
因此我們放大時間尺度來看,20年、30年後如果中國半導體設備商有了長足的進展,肯定要回過頭感謝美國政府政府的錯誤干預所創造的商機。
說到商機身為投資人的我們可以注意,在上述政客的錯誤決策中,一些轉瞬即逝的投資機會也會因政府干預而起。例如下一點。
c. Super Micro 間諜晶片事件,2018年10月美國知名商業性雜誌Bloomberg刊登新聞「The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies」聲稱Super Micro這家公司利用一顆米粒大小的間諜晶片替中國政府竊取資訊。
姑且不提一顆米粒大小,本身毫無無線射頻天線的晶片在當時技術上幾乎不可能竊取什麼資訊,2年多後海潮退去,不但美國政府或Bloomberg都未提出更進一步有力證據,整件事甚至根本就被遺忘。
當年我不但寫了幾篇文章駁斥這種謬論栽贓。還親自動手買入這家粉紅單公司,短短三天就賺了台轎車。
香港2019年暴動事件、2021年新疆奴隸棉花事件、最近新冠病毒向中國求償事件...等,我們都可以看到美國政客在試圖提高中國競爭成本的過程,會創造大大小小系統性或個體性的災難風險,例如前述Super Micro因栽贓性假消息股價從$20.61美元在一兩日內崩跌至$13左右,但隨著栽贓者無力提供更多證據,市場回歸均衡的過程,截至2021年5月28日,Super Micro股價已經來到$35。
這是說,某些因政治干預造成的個體性或系統性風險,雖然屬於不可預測的風落(windfall),但其中不乏類似Super Micro的例子,在隨後回到正常的價值位置。如W. Buffett所言:市場短期是投票機,但長期是磅秤。
d. 美國知名橋水基金創辦人Ray Dalio在其將於2021年11月初版的書籍」The Changing World Order」 已提前公開的第七章」US-China Relations and Wars」提出綜合國力歷史計算與國力表(見圖)
提出美國正處於信用擴張後期的大國階段,而歷史上處於此階段與新興國力上生階段的國家一旦發生國力曲線交叉時,多半發生大規模戰爭以重新均衡雙方與整體國際關係。
依其推論,中美兩國發生戰爭的風險來到史上最高點。
但這部分我持較保留態度,特別是新任President Biden政府的高達$6 triilion美元的聯邦預算案出台,我們注意到一者,美國聯邦政府支出繼續維持二次世界大戰以來的GDP高佔比--達25%,二者,預算增幅最大均在健康醫療(成長23.1%)、商務(27.7%)與環保(21.3%),然在國防(1.6%)與國家安全(0.2%)幾乎未有成長,甚至計入通貨膨脹因素,後二部門的預算是實質減少的。因此可推估此任政府對發生大型戰爭的預期心理。
四、 變種病毒的不確定性
這是最後最難評估的風險,在現階段的資產配置決策中不可忽略卻又幾乎難以估計。拔高到國家決策層面來看,這也是中國面對的最棘手風險之一。
結論:
以上是我從經濟學角度出發,非常簡略地預測中國在疫情後將面對的國內外經濟環境與挑戰。其中任何一項單獨提出要深入探討都會是長篇大論。還有一些我認為相對重要性較低的現象與局限條件轉變,本文也尚未涵蓋。
BTW,最後多提一句台灣獨有的風險:後疫情時代是否接種過疫苗有可能在相當時間內成為國際旅遊的必要條件。然如果台灣政府真的壓寶在台灣國產疫苗上,則在現今環境下有沒有可能不被世界多數國家組織承認?會是一個額外的成本。
參考文獻:
* The Wall Street Journal, 「Biden is the $6 Trillion Man」 (May 28, 2021), https://www.wsj.com/articles/biden-is-the-6-trillion-man-11622241749
* The Financial Times, 「The summer of inflation: will central banks and investors hold their nerve?」 (May 15, 2021), https://www.ft.com/content/414e8e47-e904-42ac-80ea-5d6c38282cac
* Ronald Coase, 「The Problems of Social Cost」 (1960)
* Ray Dalio, 「The Changing World Order: Why Nations Succeed and Fail」 (2021)
* Irving Fisher, 「The Money Illusion」 (1928)
* Mundell, Robert A. (1963). "Capital mobility and stabilization policy under fixed and flexible exchange rates". Canadian Journal of Economics and Political Science. 29 (4)
* Milton Friedman and Anna Schwartz, 「A Monetary History of the US, 1867-1960」 (1963)
* Milton Friedman, 「Money and the Stock Market」 The Journal of Political Economy, Vol. 96, No. 2 (Apr., 1988), pp. 221-245 「
* Allan Meltzer, 「Learning about Policy from Federal Reserve History」 (Spring 2010)
* Armen A. Alchian, 「Effects of Inflation Upon Stock Prices" (1965)
* 張五常, 「Will China Go Capitalist?」 (1982)
* 張五常, 「The Economic Structure of China」 (2007)
* Ronald Coase and Ning Wang, 「How China Became Capitalist」 (2012)
* Alfred Marshall, 「Principles of Economics (8th ed.)」 (1920)
文章連結:
https://bit.ly/3vD1B2o
交換理論例子 在 管理學張老師- 管理理念~#社會交換理論(Social Exchange ... 的美食出口停車場
舉例來說,組織內的員工努力工作(付出),期待的是能獲得主管的賞識與認可,所以辛苦加班被主管看見並讚許時(回報),便會產生滿足的快樂,因為一切辛苦都值得了(社會交換的 ... ... <看更多>
交換理論例子 在 [閒聊] 關於Dlo的好與壞- 看板Lakers - 批踢踢實業坊 的美食出口停車場
網址:https://youtu.be/F1f-i6sYq7g
這個影片有講到DLo在目前湖人「為什麼上場時間這麼高」。
簡單說就適配性,的確單場單點看Dlo有時候會有不少讓人想罵的地方。但長的來看,他
就是目前湖人最適合的pg(3000萬級的球員、身手、年紀)
對AR:Dlo可以無持球,讓AR持球切入的威脅變更大。同時能外圍埋伏接球,完全不影響A
R的成長
對LBJ:比起西河、德軟是個更穩定的外圍射手,同時很會打陣地戰。在老詹年紀已長,
不太一直能打早攻的情況下,可以互相有效配合,而且更適合當一個定點射手
對AD:一個很會運用擋拆的後衛,而且視野不錯。常常能看到一個擋拆直接空接的狀況,
這個是德軟比較沒有的視野,老詹是切入分球型剛好跟Dlo錯開
Dlo:自己是個優秀的雙能衛(偏射手),能帶球在三分終結,正好是補足了湖人最缺的
砲手跟持球手
簡單講一下這些是Dlo的優點,光是能「配合兩巨頭」這個條件就彌足珍貴
而且考慮到不需要球權,基本也不會氣氛(稍微痛痛)的類型,好Dlo不留嗎?(但真的
需要配一個有防守的後衛來支援,尤其季後賽)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.184.169.120 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Lakers/M.1682508034.A.24B.html
... <看更多>