機械張力與代謝壓力均是肌肥大因子之一
機械張力比較好理解
那代謝壓力到底是甚麼呢?
#代謝壓力
代謝壓力=代謝產物堆積 (舉例:氫離子、乳酸、Pi)
運動時,由於能量消耗的增加,故身體的代謝反應速率增加,當代謝產物產生的速度比清除的速度快時,也就導致代謝產物的堆積。此外阻力訓練導致的肌肉缺氧會加速代謝產物堆積先前乳酸堆積的迷思也是因為運動後測得大量的乳酸堆積,故有這樣的迷思產生
✅此篇Review由教授Brad Schoenfeld整理
因代謝壓力提升而誘發的生理適應
1️⃣肌纖維徵召
A.推測與H+的堆積有關(抑制肌肉收縮)使得徵召更多運動單位。
B.輕負荷訓練至力竭時會徵召高閾值的運動單位
這也就說明了為何輕重量和大重量,只要做到力竭均能誘發肌肥大效果
2️⃣荷爾蒙釋放
運動後使得血液中荷爾蒙短暫的增加,增加與受器作用的可能性,以利於後續的肌肉成長
此領域著名的荷爾蒙為睪固酮、類胰島素生長因子與生長激素,有強度和訓練量的訓練並搭配短時間休息(30-60秒),能使得此三者荷爾蒙於血液中的濃度上升,間接或直接地影響到肌肉的合成,但是要知道血液中的濃度增加並不能反映肌肉內真實的情況
另外荷爾蒙也會受晝夜規律的調控,以生長激素和睪固酮來說,睡覺時分泌最多。
3️⃣肌肉激素
透過自體分泌或旁分泌影響肌肉成長,推測代謝壓力能刺激合成性的肌肉激素並且減少分解性的肌肉激素,此篇舉例IL-6可以藉由影響衛星細胞來調控肌核增生
4️⃣活性氧化物質ROS
因肌肉缺氧而產生許多的ROS能調控肌肉的成長
ROS為一群氧化物的統稱,主要由粒線體的電子傳遞練和脂肪氧化而來,運動產生之ROS能刺激肌肉之MAPK路徑
5️⃣細胞腫脹
細胞腫脹使得,細胞完整性受到挑戰,進而促使蛋白質合成率增加
在劇烈的肌肉收縮時,因靜脈被擠壓、動脈持續送入更多的血液,使得肌肉內的血液變得更多,此時肌肉呈現水腫的狀態。
✅以上五點都是誘發肌肉成長的因子
文章結論提及最主要的因子是機械壓力而非代謝壓力,因為這兩者會接連出現,因此增加研究的困難度
✅如何誘發大量代謝壓力
目前研究指出,6-12RM搭配短時間休息
需注意:張力時間、休息時間、強度均會導致不同的生理反應
以荷爾蒙的角度來說,短時間休息30-60秒能誘發大量的荷爾蒙分泌
✅因代謝壓力誘發的肌肥大
低強度搭配血流阻斷法為著名的例子
#代謝壓力 #肌肥大因子 #腫脹 #蹦感 #肌肉充血
#花一分鐘認識身體 #健身營養師 #熱愛運動科學
Reference: Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training
mapk路徑 在 女人天堂 Ladys paradise Facebook 的最讚貼文
⚠️台灣博碩士論文⋯⋯⚠️
📌論文摘要
光老化(photoaging)是由於皮膚長期受到日光照射所引起的損害,會造成皮膚外觀發生鬆弛、皺紋。衰老的細胞引起p53和p16表達的上調,抑制視網膜母細胞瘤蛋白(retinoblastoma protein,Rb)的磷酸化,導致細胞週期停滯。而衰老的細胞亦伴隨有β-半乳糖苷酶(senescence-associated-β-galactosidase, SA-β-gal)活性增加及細胞核變大之狀態。此外,絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)與細胞增殖、分化、遷移、衰老和凋亡有關聯,p53蛋白可以與MAPK路徑(包括 ERK,JNK,p38)有相互作用。本研究旨在探討牛樟芝活性成分SY-1及ANCA-A在人類皮膚纖維母細胞(human dermal fibroblast,HDF) 抑制UVB照射所導致的過早衰老作用及其機轉。結果顯示,單純以SY-1及ANCA-A處理,在20 μM以下,對細胞沒有明顯的細胞毒性;然而在UVB照射的HDF細胞則有顯著的保護作用。UVB照射導致細胞生長停滯,但並無明顯的細胞凋亡發生。此外,我們發現化合物SY-1及ANCA-A均能夠有效地抑制UVB誘導的SA-β-gal表達增加,而且均不會導致細胞凋亡,顯示其抗老化作用。分析細胞衰老指標p16、p53與其下游p21的表現,結果發現SY-1及ANCA-A均有效地抑制這些基因的mRNA及蛋白在UVB照射細胞中的表達,且其抑制作用隨著濃度而增加。為了瞭解SY-1及ANCA-A之抗細胞老化之機轉,我們分析MAPK之活化,發現ERK、JNK及p38信息路徑均與此二種化合物之作用有關。分析細胞週期則發現SY-1及ANCA-A均會減少UVB導致之細胞週期S-G2/M停滯現象,顯示可減少細胞DNA之損傷。進一步更發現SY-1能夠增加NAD+-dependent deacetylases SIRT3及SIRT6之表達,並有效增加蛋白質降解系統HSP70、Cathepsin B、proteasome subunit beta 5之表達。這些結果均顯示,SY-1及ANCA-A的抗光老化保護作用可能的機轉,之後將深入分析這些化合物對抗細胞衰老機制的研究。總結,在HDF細胞中牛樟芝萃取物SY-1及ANCA-A具有抑制UVB誘導衰老的潛力。
mapk路徑 在 Micheal Lin的碎碎念 Facebook 的最佳解答
#生醫碎碎念 #訊息傳遞路徑 #MAPK_pathway #
【MAPK 信息通路的 3D 動畫】
我們身體裡的細胞除了維持內在環境的平衡,也和外界刺激有頻繁的互動;這些互動常常是由荷爾蒙、細胞外基質、或是神經傳導物質與細胞上的受體結合,產生一整串複雜的生化反應,最後改變細胞的行為——「細胞信息傳遞」是生理和藥理的基礎,大家或多或少都在課本上讀過,但是將一整條信息通路畫成精彩又真實的 3D 動畫,你看過嗎?
MAPK (mitogen-activated protein kinase),中文譯名為「絲裂原活化蛋白激酶」,掌管細胞裡多種基本生物程序,對於細胞增生、分化、移動、存活或凋亡特別重要,因此從事癌症研究的朋友都會對這一類的信息通路特別熟!
這個動畫中描繪的表皮生長因子(EGF, epidermal growth factor)通路,是最典型的受體酪胺酸激酶(receptor tyrosine kinase)和 MAPK 通路之一:
小型蛋白 EGF 是刺激細胞存活和生長的因子,它在細胞外液遊蕩,找到了並結合自己最喜歡的受體:表皮生長因子受體(EGFR)。這個受體有一隻滑稽的腳腳,原來是受體酪胺酸激酶這個家族的特徵,有激酶的功能;它被 EGF 刺激到之後,與另外一個受體酪胺酸激酶 HER2 形成二聚體,兩個受體比雙胞胎更有默契、感情更好,兩隻腳腳晃來晃去之間,運用自己的激酶功能幫對方貼上磷酸標籤,這時 MAPK 通路的分子派對才剛剛開始!
這些閃亮亮的磷酸吸引了一群蛋白質好友來排隊:首先報到的 GRB2 把來自細胞外的信息傳給細胞內的可溶性蛋白們,例如 SOS。SOS 很花心,輪流和很多個小 GTP 酶蛋白 Ras 跳舞,讓信號被放大、擴散,跳著舞的 Ras 精神振奮,將 GDP 換成高能量的 GTP,一路沿著細胞膜離原來的受體越跳越遠。
Raf 看到了跳舞的 Ras 也很想加入,但是它的身邊有兩個 14-3-3 像嚴格的父母一樣死死地盯著、壓著自己(14-3-3 是我見過名字最奇怪的蛋白質之一,居然是它在色譜層析的溶析部份和在凝膠電泳裡移動的位置,會不會取得太隨便了點?)。
好不容易甩掉 14-3-3 的 Raf,終於可以一展身手,改變自己的形狀與 Ras 結合,很多對 Ras-Raf 聚在舞池當中放閃,吸引其他蛋白質的注意;但是只甩掉 14-3-3 還有與 Ras 結合是不足以激活 Raf 的,因此 Raf 的好朋友 SRC 遞給它一個磷酸,這個磷酸化比能量飲料還有效,興奮的 Raf 將信息傳給了更多細胞內的蛋白質,例如 MEK 和 ERK(這些蛋白質之間的互動都有各種熱心的支架蛋白【scaffold proteins】幫忙拉進彼此距離、增加效率)。
不同於以上的其他蛋白,ERK 有一個重要的使命,被激活的 ERK 獨自踏上了細胞核之旅,路過細胞骨架、穿越形狀詭異的核孔門關,直到把信息傳給住在細胞核內的 MYC 才算完成了它的任務。MYC 是一個很厲害的轉錄因子(transcription factor),負責轉錄多達 15% 的基因!原來 ERK 傳遞給 MYC 的是一面免死金牌,使它免於被蛋白酶體(proteasomes)像碎紙機一樣快速分解消化掉。
MYC 與好基友 MAX 形成雙聚體,成剪刀形坐在特定的 DNA 序列上,它們的工作是召喚組蛋白乙醯化酶(histone acetyltransferase),在組蛋白上加上乙醯;因為 DNA 本身就帶有負電荷,也帶負電的乙醯使 DNA 與組蛋白分離,讓細胞核內的轉錄分子機器可以接近 DNA、開始表現這些基因。MYC-MAX 還有另外一招可以影響 DNA 的表現:和構造相似的 MAD-MAX 雙聚體結合,形成雙雙聚體,交叉聯結兩段 DNA。
透過這些非常複雜的細胞信息傳遞通路,小小的細胞外蛋白質 EGF 就足以啟動一整個系統的分子機器,把細胞搞得很忙,改變了整個細胞的基因表現模式,進而調節細胞的生長和行為。這條信息通路出問題可能會導致細胞異常增生,也就是癌症,難怪有史以來 MAPK 通路一直是癌症治療和藥物研發的研究重點!
現在可以觀賞這麼精美的動畫學生物學真是幸福,比死背課本上描述細胞信息傳遞的枯燥文字例如 Gs -> adenylyl cyclase -> cAMP -> PKA -> CREB 生動有趣多了,也更容易記住,真希望以前修生化和藥理學時,所有主要的信息通道都有這樣的動畫!
在修神經生理和藥理學時,我初嚐細胞信息傳遞的複雜,複雜到一位神經生理學教授說簡直是「惡夢的網路(web of nightmare)」,我問藥理學教授 Dr. Dana Selley:「細胞隨時都接收到一大堆不同的信號分子,細胞內的信息傳遞系統又那麼複雜,細胞怎麼不會搞糊塗了呢?」
Dr. Dana Selley 笑著回答:「會呀,那就叫病理現象(pathology)!」
【MAPK 信息通路的 3D 動畫】
我們身體裡的細胞除了維持內在環境的平衡,也和外界刺激有頻繁的互動;這些互動常常是由荷爾蒙、細胞外基質、或是神經傳導物質與細胞上的受體結合,產生一整串複雜的生化反應,最後改變細胞的行為——「細胞信息傳遞」是生理和藥理的基礎,大家或多或少都在課本上讀過,但是將一整條信息通路畫成精彩又真實的 3D 動畫,你看過嗎?
MAPK (mitogen-activated protein kinase),中文譯名為「絲裂原活化蛋白激酶」,掌管細胞裡多種基本生物程序,對於細胞增生、分化、移動、存活或凋亡特別重要,因此從事癌症研究的朋友都會對這一類的信息通路特別熟!
這個動畫中描繪的表皮生長因子(EGF, epidermal growth factor)通路,是最典型的受體酪胺酸激酶(receptor tyrosine kinase)和 MAPK 通路之一:
小型蛋白 EGF 是刺激細胞存活和生長的因子,它在細胞外液遊蕩,找到了並結合自己最喜歡的受體:表皮生長因子受體(EGFR)。這個受體有一隻滑稽的腳腳,原來是受體酪胺酸激酶這個家族的特徵,有激酶的功能;它被 EGF 刺激到之後,與另外一個受體酪胺酸激酶 HER2 形成二聚體,兩個受體比雙胞胎更有默契、感情更好,兩隻腳腳晃來晃去之間,運用自己的激酶功能幫對方貼上磷酸標籤,這時 MAPK 通路的分子派對才剛剛開始!
這些閃亮亮的磷酸吸引了一群蛋白質好友來排隊:首先報到的 GRB2 把來自細胞外的信息傳給細胞內的可溶性蛋白們,例如 SOS。SOS 很花心,輪流和很多個小 GTP 酶蛋白 Ras 跳舞,讓信號被放大、擴散,跳著舞的 Ras 精神振奮,將 GDP 換成高能量的 GTP,一路沿著細胞膜離原來的受體越跳越遠。
Raf 看到了跳舞的 Ras 也很想加入,但是它的身邊有兩個 14-3-3 像嚴格的父母一樣死死地盯著、壓著自己(14-3-3 是我見過名字最奇怪的蛋白質之一,居然是它在色譜層析的溶析部份和在凝膠電泳裡移動的位置,會不會取得太隨便了點?)。
好不容易甩掉 14-3-3 的 Raf,終於可以一展身手,改變自己的形狀與 Ras 結合,很多對 Ras-Raf 聚在舞池當中放閃,吸引其他蛋白質的注意;但是只甩掉 14-3-3 還有與 Ras 結合是不足以激活 Raf 的,因此 Raf 的好朋友 SRC 遞給它一個磷酸,這個磷酸化比能量飲料還有效,興奮的 Raf 將信息傳給了更多細胞內的蛋白質,例如 MEK 和 ERK(這些蛋白質之間的互動都有各種熱心的支架蛋白【scaffold proteins】幫忙拉進彼此距離、增加效率)。
不同於以上的其他蛋白,ERK 有一個重要的使命,被激活的 ERK 獨自踏上了細胞核之旅,路過細胞骨架、穿越形狀詭異的核孔門關,直到把信息傳給住在細胞核內的 MYC 才算完成了它的任務。MYC 是一個很厲害的轉錄因子(transcription factor),負責轉錄多達 15% 的基因!原來 ERK 傳遞給 MYC 的是一面免死金牌,使它免於被蛋白酶體(proteasomes)像碎紙機一樣快速分解消化掉。 MYC 與好基友 MAX 形成雙聚體,成剪刀形坐在特定的 DNA 序列上,它們的工作是召喚組蛋白乙醯化酶(histone acetyltransferase),在組蛋白上加上乙醯;因為 DNA 本身就帶有負電荷,也帶負電的乙醯使 DNA 與組蛋白分離,讓細胞核內的轉錄分子機器可以接近 DNA、開始表現這些基因。MYC-MAX 還有另外一招可以影響 DNA 的表現:和構造相似的 MAD-MAX 雙聚體結合,形成雙雙聚體,交叉聯結兩段 DNA。
透過這些非常複雜的細胞信息傳遞通路,小小的細胞外蛋白質 EGF 就足以啟動一整個系統的分子機器,把細胞搞得很忙,改變了整個細胞的基因表現模式,進而調節細胞的生長和行為。這條信息通路出問題可能會導致細胞異常增生,也就是癌症,難怪有史以來 MAPK 通路一直是癌症治療和藥物研發的研究重點!
現在可以觀賞這麼精美的動畫學生物學真是幸福,比死背課本上描述細胞信息傳遞的枯燥文字例如 Gs -> adenylyl cyclase -> cAMP -> PKA -> CREB 生動有趣多了,也更容易記住,真希望以前修生化和藥理學時,所有主要的信息通道都有這樣的動畫!
在修神經生理和藥理學時,我初嚐細胞信息傳遞的複雜,複雜到一位神經生理學教授說簡直是「惡夢的網路(web of nightmare)」,我問藥理學教授 Dr. Dana Selley:「細胞隨時都接收到一大堆不同的信號分子,細胞內的信息傳遞系統又那麼複雜,細胞怎麼不會搞糊塗了呢?」
Dr. Dana Selley 笑著回答:「會呀,那就叫病理現象(pathology)!」
《歡迎使用臉書直接分享此文章,但如果想轉貼或刊登其他網站、報紙、書籍、媒體等,需經過作者陳昱慈(Rita Chen)本人同意,切勿侵害著作權。》
The Molecular Interactions of the MAPK Pathway
mapk路徑 在 The MAP-Kinase (MAPK) signalling pathway - YouTube 的美食出口停車場
... <看更多>