感謝熱情認真的李學長,
今天要來介紹「建中科學班」!
————————————————————
科學班考試三月多就考了,獨立招生。
📍考進科學班有什麼優點?
主科老師會是比較有經驗的,幾乎沒有地雷老師。老師還會同時兼任你的專題研究老師
🔆三年不分班,會有電神互相切磋討論。
教學資源多,可以借用科學館做實驗、借競賽資料、想考數理科免修可以直接報名(普通班要7%或是老師推薦)。
數理科目進度高二就上完,要在高三去台大修課(微積分、普通物理、普通化學、普通生物四選一)。高二下須通過資格考試方能第三年取得台大修課資格,沒考過者你會拿不到科學班認證證明文件,但是不會強制將你轉班。
📍 科學班的內容會不會比較難,成績會不會不好看?
🔆 數理科的內容會比較難,老師比較少管必選修,以主題式教學為主。
某些科目段考較難,老師會調到比較高分,只要你有努力老師一定看得出來分數給的算高。文科被當在科學班會更常發生,因為我們甄選就是數理跟一階不太難的語文考試。
📍 我是一個沒有超修的國三生(注意,那是會考前),要怎麼準備考試?
🔆 初試:
語文:不用太擔心,英文國文都在會考範圍,然後T分數差距也不大。
考古題以及其相似題型有公開,建議練完,才有考過初試的機會。
同樣地,初試會有沒準備的人來考,分數的標準差較大,最後T分數大概會落在60上下,在總體人數上大約是60/350。
科學班數學考試絕大多數題都可以國中解法,但多半想不太到。不會寫不要太沮喪,其他人大部分也不會寫。如果有餘力可以學習一些高中好用的單元如三角函數,能在你想不出那些超難解法時提供一個只要花時間就可以做出來的方法。
自然科會參雜一些高中觀念,但是不太會影響到解題,計算方面則多半是國中公式在高中的延伸。可以針對考古題去對對應的高中章節進行延伸閱讀在考試時比較不會那麼慌。
🔆 複試(實驗&證明):
數學佔複試4成,數學會是好幾大題每題帶六七小題的形式,其中每題的前段基本上通過初試的人都做得出來,建議每題都先做完前幾小題,卡在一大題很久會造成大量的分數損失。建中沒有公布複試題目,但外縣市學校好像有,可以去找找,但難度低於建中。
物理和化學各佔複試的2成,都有筆試和實驗。
物理筆試會考一些較難的高二高三題型最難到達物理奧林匹亞初複試水平,運動學和力學佔大宗,物奧初選該部份可以在高中範圍念完後練習一下。光學和熱學出現了國中為提供的公式請先自行預習,高中的電磁學與國中難度差較多,考的比較少。
化學筆試範圍有點多且量也很多(四十幾頁),有英文文章的閱測,比起其他題這類題目只要英文能力強一點就能做了。其他題目需要高中大量觀念,而且有些觀念是常常連高中生都忽視的(像溶解)。
🔆 實驗的部分:
兩科都是以高中實驗改編而來,會有線索提供你研究步驟以及計算,在討論的部分最好能去閱讀一些高中的實驗手冊,了解格式以及重點句的寫法,不要玩器材,會被扣分,打破也會(手殘者在此)。數據做出來差強人意也要放然後再想辦法解釋,你如果捏造數據老師一定會發現,你的成績就不會太高。有些討論不會需要作完實驗,實驗做不出來趕緊寫那裡搶分!!
複試的實驗技巧很多難以以國中的能力去填補,如果有這個規劃,可以在初試後詢問你的國中理化老師是否有機會讓你在課餘時間自主訓練高中實驗。(我的國中老師蠻支持的)
生物和地科各佔複試一成,生物高機率動植物器官、滲透壓、細胞觀察。做好這三類的實驗考過機率較大。地科由於內容不多,推薦讀完高中內容,才能節省做題組前要看大量資料才能解決的窘境。
✅ 再來是學習歷程的部分,學習歷程會用到競賽、專題等東西,考上者你們跟數資班對比的優勢就在四月到七月了,趕緊選一科專心拼競賽。在開學後你們可以跟數資班拉開一段距離(但在一、兩年後就沒了QQ)
✅專題研究有數學、物理、化學、生物、地科、資訊六科可以選,與你的競賽能力無關,建議去台大或中研院找個指導教授,他能帶給你大量的收穫。
專題研究高一下開始分組,高二上10月有國際科展初審,進度快者可以直接拼這個
高二下三月會有校內科展然後特優可至台北市科展然後特優可至全國科展,最後還是會回到台灣國際科展,台灣國際科展的目的就是篩選出一批國手前往美國比ISEF選上國手至少可以推薦本科系,得幾等獎會影響保送推薦範圍,請查教育部法規。
✅ 開學初會有能力競賽,以及各科奧林匹亞,能力競賽物理、化學、生物、地科限四選二初試,到了校隊培訓時資訊以外科目限選一科成為校隊。
然後有時候比競賽還是會吃天賦的,吃天賦的大小由左至右遞減大概是
數學>資訊>物理>化學>生物
但同樣也有人全部都行然後被迫上述能競四選二
最終能力競賽與奧林匹亞都會匯流到選訓營,然後決選營,而選訓營前半會推薦個本科系,成為國手後得金銀銅會影響保送推薦範圍,請查教育部法規。
✅ 科學班保送推薦人數僅佔三分之一,其餘的人最終還是會回流到學測指考。如果當初文科很爛考進來,沒拼到保送或推薦及特殊選才者很吃虧。可能會因此落入一些較差的志願。申請時如果有一個某科選訓營,加分會很賺。
✅ 再來就是要關注人才培育計畫,大概在8, 9月可以去考,有台大、清大、中研院等等各科的培育。這可以推廣到專題研究的部分,如果你對計畫裡的指導教授的研究主題感興趣的話,你可以毛遂自薦,指導教授get!
✅科學班的同儕實力很強大,有數物化生地免修的人、各科的奧林匹亞決選者與國手,跟他們一同考試時不要壓力太大。也因為這樣你永遠有奮鬥的目標,以及能幫你在課業跟競賽都走得更遠的人。
#俐媽學子經驗分享
#俐媽學子經驗分享資優班篇
#他們認真拚數理科學
#但也沒偏廢英文的學習喔
#台大明明高手輩出
同時也有1部Youtube影片,追蹤數超過3萬的網紅李祥數學,堪稱一絕,也在其Youtube影片中提到,線上課程賣場:https://changhsumath.1shop.tw/ewkhca 成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join 追蹤我的ig:https://www.instagra...
「標準差公式高中」的推薦目錄:
- 關於標準差公式高中 在 辣媽英文天后 林俐 Carol Facebook 的最佳貼文
- 關於標準差公式高中 在 李祥數學,堪稱一絕 Youtube 的最佳貼文
- 關於標準差公式高中 在 [問題] 樣本標準差為什麼除以(n-1) - 精華區tutor 的評價
- 關於標準差公式高中 在 高中數學|標準差公式怎麼背 - YouTube 的評價
- 關於標準差公式高中 在 高中數學_數據分析_3.平均數、變異數與標準差_游崇鑫 的評價
- 關於標準差公式高中 在 標準差公式高中的評價費用和推薦,EDU.TW、PTT.CC和網紅 ... 的評價
- 關於標準差公式高中 在 心情板 - Dcard 的評價
- 關於標準差公式高中 在 [閒聊] 有沒有窮但好看的動畫PTT推薦C_Chat 的評價
標準差公式高中 在 李祥數學,堪稱一絕 Youtube 的最佳貼文
線上課程賣場:https://changhsumath.1shop.tw/ewkhca
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg
標準差公式高中 在 高中數學|標準差公式怎麼背 - YouTube 的美食出口停車場
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCkFG4UB42m0vvx9Rv8ISeFw/join# 高中 數學# 標準差 #學測數學 標準差公式 怎麼背? ... <看更多>
標準差公式高中 在 高中數學_數據分析_3.平均數、變異數與標準差_游崇鑫 的美食出口停車場
平均數#變異數# 標準差 DeltaMOOCx 台達磨課師是 高中 /高工及大學的免費公益磨課師(MOOCs)平臺。練習題、討論、教師輔導及更多數位課程資源, ... ... <看更多>
標準差公式高中 在 [問題] 樣本標準差為什麼除以(n-1) - 精華區tutor 的美食出口停車場
_ 2
Σ(X-x)
s^2 = ------------
n-1
請問為什麼要用 n-1 阿?
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.243.218
> -------------------------------------------------------------------------- <
作者: doa2 (好窮..沒錢..Q_Q) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 18:24:46 2003
※ 引述《weisor (有一天 如果...)》之銘言:
: _ 2
: Σ(X-x)
: s^2 = ------------
: n-1
: 請問為什麼要用 n-1 阿?
如果資料是抽樣資料
樣本數為n
當n=1時 無法知道其變異的程度
_ _
n=2時 X1-x=-(X2-x)
只能知道一個變異的程度
所以當樣本數為n
_ _
殘差Xi-x, Σ(Xi-x)=0
只有n-1個是自由的,第n個殘差值等於其他殘差值總合的負值
--
我統計不好...@@ 以上都是照本宣科而已
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.249.46
> -------------------------------------------------------------------------- <
作者: potoser (有趣的UDD) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 18:22:07 2003
※ 引述《weisor (有一天 如果...)》之銘言:
: _ 2
: Σ(X-x)
: s^2 = ------------
: n-1
: 請問為什麼要用 n-1 阿?
統計學裡面有說
高中好像不用減1 後來學統計學裡面有提到減一的問題....
...好像是自由度...
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.213.163
> -------------------------------------------------------------------------- <
作者: weisor (有一天 如果...) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 18:36:26 2003
※ 引述《potoser (有趣的UDD)》之銘言:
: ※ 引述《weisor (有一天 如果...)》之銘言:
: : _ 2
: : Σ(X-x)
: : s^2 = ------------
: : n-1
: : 請問為什麼要用 n-1 阿?
: 統計學裡面有說
: 高中好像不用減1 後來學統計學裡面有提到減一的問題....
: ...好像是自由度...
我高中學標準差的時候是不用減一
可是現在改版後 就要減一了(至少南一版是)
完全搞不懂為什麼
要如何說明要用n-1阿
(因為教科書上是寫用n-1可以縮小誤差 為什麼會縮小誤差阿)
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.243.218
※ 編輯: weisor 來自: 140.112.243.218 (03/23 18:36)
※ 編輯: weisor 來自: 140.112.243.218 (03/23 18:37)
> -------------------------------------------------------------------------- <
作者: OneofPieces (STILL LOVING YOU ) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 20:49:08 2003
※ 引述《weisor (有一天 如果...)》之銘言:
: ※ 引述《potoser (有趣的UDD)》之銘言:
: : 統計學裡面有說
: : 高中好像不用減1 後來學統計學裡面有提到減一的問題....
: : ...好像是自由度...
: 我高中學標準差的時候是不用減一
: 可是現在改版後 就要減一了(至少南一版是)
: 完全搞不懂為什麼
: 要如何說明要用n-1阿
: (因為教科書上是寫用n-1可以縮小誤差 為什麼會縮小誤差阿)
簡單來說為何要用n-1
譬如有10個數,由1,2,3...,9,0
你要將他們隨便任意排成一個十個數自的號碼~~~
第一個有10個,第二個有九個,一直到最後一個~~~有只有一個數字可以選,..
那請問是不是只有九個地方的數字可以隨意選,而最後一個一定是剩下的那個數字~
所以所謂的自由度就是這樣而來~~~~
所以為 10 - 1 = 9,
這是統計上說的,....
--
愛需要傻勁,但不能傷害別人,愛需要耐力,但不是一再的騷擾愛人,
愛有許多的能力,能使人快樂,亦能使人痛苦。
時常補給自己愛的知識,讓愛人與被愛都有福。
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.243.135
> -------------------------------------------------------------------------- <
作者: coco1003 (小精靈) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 21:25:52 2003
※ 引述《OneofPieces (STILL LOVING YOU )》之銘言:
: ※ 引述《weisor (有一天 如果...)》之銘言:
: : 我高中學標準差的時候是不用減一
: : 可是現在改版後 就要減一了(至少南一版是)
: : 完全搞不懂為什麼
: : 要如何說明要用n-1阿
: : (因為教科書上是寫用n-1可以縮小誤差 為什麼會縮小誤差阿)
: 簡單來說為何要用n-1
: 譬如有10個數,由1,2,3...,9,0
: 你要將他們隨便任意排成一個十個數自的號碼~~~
: 第一個有10個,第二個有九個,一直到最後一個~~~有只有一個數字可以選,..
: 那請問是不是只有九個地方的數字可以隨意選,而最後一個一定是剩下的那個數字~
: 所以所謂的自由度就是這樣而來~~~~
: 所以為 10 - 1 = 9,
: 這是統計上說的,....
記得在上分析化學的時候
老師有說過
若族群夠大的話...就用n....
若族群太小的話...就用n-1...
至於多少才叫做大咧???
分析化學課本中是說 當n>20時.....才稱的上是大.....所以用n代
<20.......稱做小.................n-1
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 219.68.10.188
> -------------------------------------------------------------------------- <
作者: DEREK (全身無力頭好痛><) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 22:12:22 2003
※ 引述《coco1003 (小精靈)》之銘言:
: ※ 引述《OneofPieces (STILL LOVING YOU )》之銘言:
: : 簡單來說為何要用n-1
: : 譬如有10個數,由1,2,3...,9,0
: : 你要將他們隨便任意排成一個十個數自的號碼~~~
: : 第一個有10個,第二個有九個,一直到最後一個~~~有只有一個數字可以選,..
: : 那請問是不是只有九個地方的數字可以隨意選,而最後一個一定是剩下的那個數字~
: : 所以所謂的自由度就是這樣而來~~~~
: : 所以為 10 - 1 = 9,
: : 這是統計上說的,....
: 記得在上分析化學的時候
: 老師有說過
: 若族群夠大的話...就用n....
: 若族群太小的話...就用n-1...
: 至於多少才叫做大咧???
: 分析化學課本中是說 當n>20時.....才稱的上是大.....所以用n代
: <20.......稱做小.................n-1
我記得我高中數學老師有說過...
當你是抽樣的時候就要用n-1..全效用亂數抽部份人的成績出來的平均
但當你是用母體的話就用n...像是全班的平均
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 61.223.21.66
> -------------------------------------------------------------------------- <
作者: OLMEC (gogogo) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Sun Mar 23 22:34:20 2003
※ 引述《OneofPieces (STILL LOVING YOU )》之銘言:
: ※ 引述《weisor (有一天 如果...)》之銘言:
: : 我高中學標準差的時候是不用減一
: : 可是現在改版後 就要減一了(至少南一版是)
: : 完全搞不懂為什麼
: : 要如何說明要用n-1阿
: : (因為教科書上是寫用n-1可以縮小誤差 為什麼會縮小誤差阿)
: 簡單來說為何要用n-1
: 譬如有10個數,由1,2,3...,9,0
: 你要將他們隨便任意排成一個十個數自的號碼~~~
: 第一個有10個,第二個有九個,一直到最後一個~~~有只有一個數字可以選,..
: 那請問是不是只有九個地方的數字可以隨意選,而最後一個一定是剩下的那個數字~
: 所以所謂的自由度就是這樣而來~~~~
: 所以為 10 - 1 = 9,
: 這是統計上說的,....
恩~~~
自由度大概知道了些
可是還是不清楚為什麼可以縮小誤差耶@@
可以解釋再清楚些嗎
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 219.91.56.27
> -------------------------------------------------------------------------- <
作者: rath (Alien) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Mon Mar 24 01:27:34 2003
※ 引述《OLMEC (gogogo)》之銘言:
: ※ 引述《OneofPieces (STILL LOVING YOU )》之銘言:
: : 簡單來說為何要用n-1
: : 譬如有10個數,由1,2,3...,9,0
: : 你要將他們隨便任意排成一個十個數自的號碼~~~
: : 第一個有10個,第二個有九個,一直到最後一個~~~有只有一個數字可以選,..
: : 那請問是不是只有九個地方的數字可以隨意選,而最後一個一定是剩下的那個數字~
: : 所以所謂的自由度就是這樣而來~~~~
: : 所以為 10 - 1 = 9,
: : 這是統計上說的,....
: 恩~~~
: 自由度大概知道了些
: 可是還是不清楚為什麼可以縮小誤差耶@@
: 可以解釋再清楚些嗎
不偏性..
--
렠 任思緒飛揚,隨筆而至ꄊ
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 210.85.79.68
> -------------------------------------------------------------------------- <
作者: andrew43 (我最愛狗了!) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Tue Mar 25 22:41:29 2003
※ 引述《weisor (有一天 如果...)》之銘言:
: _ 2
: Σ(X-x)
: s^2 = ------------
: n-1
: 請問為什麼要用 n-1 阿?
我們老師這樣說
如果是sample,就用n-1
是population就用n
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 210.202.161.44
> -------------------------------------------------------------------------- <
作者: amberliao (小寶貝) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Thu Mar 27 16:54:16 2003
※ 引述《andrew43 (我最愛狗了!)》之銘言:
: ※ 引述《weisor (有一天 如果...)》之銘言:
: : _ 2
: : Σ(X-x)
: : s^2 = ------------
: : n-1
: : 請問為什麼要用 n-1 阿?
: 我們老師這樣說
: 如果是sample,就用n-1
: 是population就用n
n-1 代表就是自由度...
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.117.204.80
> -------------------------------------------------------------------------- <
作者: spicy3 (330越野踐行呀!) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Thu Mar 27 17:06:15 2003
根據統計的簡單觀點,
因為是抽一部分的樣本估計整個母體。
所以以n-1了表示變動幅度會變大。
我想,對於高中生這樣解釋就好了。
不需用數統解釋吧。
※ 引述《amberliao (小寶貝)》之銘言:
: ※ 引述《andrew43 (我最愛狗了!)》之銘言:
: : 我們老師這樣說
: : 如果是sample,就用n-1
: : 是population就用n
: n-1 代表就是自由度...
--
所謂的氛圍呢,我猜他不過是在粉紅色的季節裡輕輕地呢喃。
就像是販賣一整季春天的奶油棒與孩童們的聲音,
噗噗地送入整個痲痺的腦袋裡。
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.119.73.88
> -------------------------------------------------------------------------- <
作者: weisor (有一天 如果...) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Thu Apr 24 10:01:38 2003
※ 引述《weisor (有一天 如果...)》之銘言:
: _ 2
: Σ(X-x)
: s^2 = ------------
: n-1
: 請問為什麼要用 n-1 阿?
樣本空間 S, |S| = N
X 為 S 的一個子集合(一組抽樣結果), |X| = n
_
x = ΣX / n
為使 s^2 的 期望值 為 σ^2
σ^2 = Σ(S-μ)^2 / N
μ = ΣS / N
_
∴ s^2 = Σ(X-x)^2 / (n-1)
=> E(s^2) = σ^2
ps 不過我怎麼推 都只是近似而已 沒有相等說
====================================================================
也就是說從 N 個元素中 任意取 n 個樣本 以 s^2 計算所得的 樣本標準差
平均會近似於(等於?) 母體標準差 σ^2
====================================================================
(n-1)E(s^2) = E( E(X^2) - n[E(X)]^2 )
= E[E(X^2)] - nE( [E(X)]^2 )
= nE(S^2) - n( Var(E[X]) + (E[E(X)])^2 )
E(S^2) = Var(S) + E(S)^2 = σ^2 + μ^2
?
Var(E[X]) = Var( ΣX / n ) = Var( ΣX ) / n^2 = Σ Var(X) / n^2 = Var(S) / n^2
= σ^2 / n^2
E[E(X)]^2 = E(S)^2 = μ^2
∴ (n-1)E(S^2) = n(σ^2 + μ^2) - n(σ^2 / n^2 + μ^2) = (n-1)σ^2
∴ E(S^2) = σ^2 故得証 #
=====================================================================
不過我推一推 都只得到 E(S^2) = N*σ^2 /(N-1) -> σ^2
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.243.218
> -------------------------------------------------------------------------- <
作者: rath (鑽研。) 看板: tutor
標題: [轉錄]Re: 請問標準差公式
時間: Thu Apr 24 11:57:14 2003
※ [本文轉錄自 Math 看板]
作者: plover (㊣騎牆自爆派㊣) 看板: Math
標題: Re: 請問標準差公式
時間: Tue Apr 22 23:59:31 2003
※ 引述《ACUMENEYE (信念)》之銘言:
: 一樣本 X1,X2,X3......Xn,標準差公式:
: i=n _
: 為何是 (1/n-1)Σ ( Xi-X )^2
: i=1
: 而不是 i=n _
: (1/ n )Σ ( Xi-X )^2 呢?
: i=1
: 只記的老師說跟自由度有關...@@@
應該是說無偏性啦。
_
假設現在 S^2 取成 = 1/n Σ(X_i-X)^2 (index 不打了,you know)
然後我們來算 S^2 的期望值:
(很自然的想法,這個期望值應該是 σ^2)
可是算出來,卻發現說 E[S^2] = (n-1)/n σ^2.
那該怎麼取 S^2 才會產生 E[S^2] = σ^2 漂亮的結果呢?
就把 1/n 改成 1/(n-1) 就行了:)
--
∞
3.30 Definition e = Σ 1/n!
n=0
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.247.33
--
렠 任思緒飛揚,隨筆而至ꄊ
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 210.85.79.106
> -------------------------------------------------------------------------- <
作者: uouo (小優兒活力普查員) 看板: tutor
標題: Re: [問題] 樣本標準差為什麼除以(n-1)
時間: Thu Apr 24 12:09:52 2003
※ 引述《weisor (有一天 如果...)》之銘言:
: ※ 引述《weisor (有一天 如果...)》之銘言:
: : _ 2
: : Σ(X-x)
: : s^2 = ------------
: : n-1
: : 請問為什麼要用 n-1 阿?
: 樣本空間 S, |S| = N
: X 為 S 的一個子集合(一組抽樣結果), |X| = n
: _
: x = ΣX / n
: 為使 s^2 的 期望值 為 σ^2
: σ^2 = Σ(S-μ)^2 / N
: μ = ΣS / N
: _
: ∴ s^2 = Σ(X-x)^2 / (n-1)
: => E(s^2) = σ^2
: ps 不過我怎麼推 都只是近似而已 沒有相等說
: ====================================================================
: 也就是說從 N 個元素中 任意取 n 個樣本 以 s^2 計算所得的 樣本標準差
: 平均會近似於(等於?) 母體標準差 σ^2
: ====================================================================
: (n-1)E(s^2) = E( E(X^2) - n[E(X)]^2 )
: = E[E(X^2)] - nE( [E(X)]^2 )
: = nE(S^2) - n( Var(E[X]) + (E[E(X)])^2 )
: E(S^2) = Var(S) + E(S)^2 = σ^2 + μ^2
: ?
: Var(E[X]) = Var( ΣX / n ) = Var( ΣX ) / n^2 = Σ Var(X) / n^2 = Var(S) / n^2
: = σ^2 / n^2
: E[E(X)]^2 = E(S)^2 = μ^2
: ∴ (n-1)E(S^2) = n(σ^2 + μ^2) - n(σ^2 / n^2 + μ^2) = (n-1)σ^2
: ∴ E(S^2) = σ^2 故得証 #
: =====================================================================
: 不過我推一推 都只得到 E(S^2) = N*σ^2 /(N-1) -> σ^2
以直覺觀念去想 無論是變異數或標準差
皆與自由度有相關性 當我們在算 N 個數之間的變異數
當我們選擇其中之一當作基準時
剩下的 N-1 的數也只有 N-1 個位子去選擇
我只是很簡單的去想罷了
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 210.85.83.234
... <看更多>