🔥udemy 黑色星期五全站特價中
課程說明
在本課程中,你將了解什麼是超參數( hyperparameters ),什麼是遺傳演算法( Genetic Algorithm ),以及什麼是超參數最佳化( hyperparameter optimization )。
在本課程中,你將應用遺傳演算法最佳化支持向量機( Support Vector Machines )和多層感知器神經網路( Multilayer Perceptron Neural Networks )的性能。超參數最佳化將在兩個資料集上完成,一個用於預測建築物冷熱負荷的迴歸資料集,以及一個關於將電子郵件分類為垃圾郵件和非垃圾郵件的分類資料集。 SVM 和 MLP 將被應用於資料集而不進行最佳化,並將其結果與最佳化結果進行比較。
到本課程結束時,你將學到如何使用 Python 寫遺傳演算法程式,以及如何最佳化機器學習演算法以獲得最佳性能。
https://softnshare.com/machine-learning-optimization-using-genetic-algorithm/
Search
mlp演算法 在 機器學習-1.多層感知器(MLP) - YouTube 的美食出口停車場
這裡運用簡單程式來使用類神經網路中的多層感知器( MLP )對分組資料進行訓練,找出權重後,以圖形顯現分組狀況,用以明瞭神經網路的運行。 ... <看更多>