【最。後。倒。數】5折優惠最後24小時!
#一聽就懂的Python機器學習,把握最後優惠►https://ps.yottau.net/SE32B
紀老師在程式補教界教學30餘年,慣用深入淺出的方式帶同學學習,這堂課將公開多年來的獨門教法!
▌10個機器學習演算法全解說
✅ 常見四大迴歸:簡單線性迴歸、多元線性迴歸、多項式迴歸、邏輯迴歸
✅ 單純貝氏分類器:說明貝氏定理、最大似然率估計(Max Likelihood Estimation, MLE)
✅ 支援向量機:說明支援向量機的原理、內核函數的原理與好處、以及支援向量機的五大參數等..
✅ 決策樹:透過介紹兩種決策樹演算法:ID3 與 CART,說明決策樹分類的背後原理
✅ 隨機森林:說明隨機森林的原理、與四大優點:能處理大量低關連的屬性、對缺失資料抗性良好、能產生「統計不偏」的訓練集、對離群值抗性較佳
✅ K 平均集群法:解釋「何謂集群演算法」外,也介紹了 K-平均法(K-Means)的原理。透過介紹 「K-Means++ 演算法」與「群內平方和(WCSS)」,教大家如何選擇適合的「初始值」與「最佳 K 值」到底是多少
學完這門課,不只機器學習的演算法由淺入深全掌握,還能自己完成一個 #股票趨勢預測系統!
對於課綱的設計,老師非常有信心~每個章節會搭配生活實例,大量課後作業讓你強勢練習!
----------------------------------
#一聽就懂的Python機器學習
課程滿滿30小時以上,超級豐富
募資期間購課只要2500元(原價4980元)錯過可惜!
📌 線上課程5折優惠,最後24小時 https://ps.yottau.net/SE32B
Search
id3決策樹 在 多元決策樹、整合學習、自適應增強演算法 - YouTube 的美食出口停車場
機器學習3: ID3 決策樹 演算法(Iterative Dichotomiser 3 decision tree)、多元決策樹(Multiple Decision Trees)、整合學習(Ensemble ... ... <看更多>