📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有1部Youtube影片,追蹤數超過0的網紅CarDebuts,也在其Youtube影片中提到,เปิดตัว Lamborghini Huracan EVO ลัมบอร์กินี่ ฮูราคาน อีโว ในไทย เปิดตัว 22 มีนาคม 2019 นี้ Automobili Lamborghini presents the new Lamborghini Huracá...
higher order function 在 軟體開發學習資訊分享 Facebook 的精選貼文
--課程已於 2020 年 12 月更新--
本課程是這個領域多年積累的成果,結合了最好的資源、工具和教學內容創建而成的 JavaScript 課程,它將教會你成為高階 JavaScript 開發人員所需的一切知識。
無論你是 Web 開發人員、 React、 Angular、 Vue.js 開發人員(前端開發人員) ,還是 Node.js 後端開發人員,你都將從本課程中受益,因為 Javascript 是這些技術背後的核心。
從這 23.5 小時的課程,你會學到
1. 進階 JavaScript 實踐
2. 物件導向程式設計( OOP )
3. 函數程式設計( Functional Programming )
4. 作用範圍( Scope ) 和執行環境 ( Execution Context )
5. 繼承 + 原型鏈
6. 最新功能 : ES6,ES7,ES8,ES9
7. 閉包( Closures )
8. 非同步 JavaScript + 事件迴圈
9. JavaScript 模組
10. `this` 關鍵字
11. JavaScript 引擎和執行時期( Runtime )
12. 錯誤處理
13. 堆疊溢位( Stack Overflow )
14. 記憶體洩漏( Memory Leaks )
15. 複合( Composition ) vs 繼承( Inheritance)
16. 強制轉型( Type Coersion )
17. 傳址( Pass By Reference ) vs 傳值( Pass by Value )
18. 高階函數( Higher Order Functions )
19. IIFE ( Immediately Invoked Function Expression,一個定義完馬上就執行的 JavaScript 函數)
20. .call(), .apply(), .bind()
21. 直譯器 / 編譯器 / JIT 編譯器
22. 垃圾回收
23. 變數宣告提升( Hoisting )
24. JavaScript 最佳實踐
https://softnshare.com/advanced-javascript-concepts/
higher order function 在 軟體開發學習資訊分享 Facebook 的最佳解答
--課程已於 2020 年 8 月更新--
本課程是這個領域多年積累的成果,結合了最好的資源、工具和教學內容創建而成的 JavaScript 課程,它將教會你成為高階 JavaScript 開發人員所需的一切知識。
無論你是 Web 開發人員、 React、 Angular、 Vue.js 開發人員(前端開發人員) ,還是 Node.js 後端開發人員,你都將從本課程中受益,因為 Javascript 是這些技術背後的核心。
從這 23.5 小時的課程,你會學到
1. 進階 JavaScript 實踐
2. 物件導向程式設計( OOP )
3. 函數程式設計( Functional Programming )
4. 作用範圍( Scope ) 和執行環境 ( Execution Context )
5. 繼承 + 原型鏈
6. 最新功能 : ES6,ES7,ES8,ES9
7. 閉包( Closures )
8. 非同步 JavaScript + 事件迴圈
9. JavaScript 模組
10. `this` 關鍵字
11. JavaScript 引擎和執行時期( Runtime )
12. 錯誤處理
13. 堆疊溢位( Stack Overflow )
14. 記憶體洩漏( Memory Leaks )
15. 複合( Composition ) vs 繼承( Inheritance)
16. 強制轉型( Type Coersion )
17. 傳址( Pass By Reference ) vs 傳值( Pass by Value )
18. 高階函數( Higher Order Functions )
19. IIFE ( Immediately Invoked Function Expression,一個定義完馬上就執行的 JavaScript 函數)
20. .call(), .apply(), .bind()
21. 直譯器 / 編譯器 / JIT 編譯器
22. 垃圾回收
23. 變數宣告提升( Hoisting )
24. JavaScript 最佳實踐
https://softnshare.com/advanced-javascript-concepts/
higher order function 在 CarDebuts Youtube 的最佳貼文
เปิดตัว Lamborghini Huracan EVO ลัมบอร์กินี่ ฮูราคาน อีโว ในไทย เปิดตัว 22 มีนาคม 2019 นี้
Automobili Lamborghini presents the new Lamborghini Huracán EVO: the next generation V10 super sports car, based on the prowess and performance of the Huracán Performante and incorporating next-generation vehicle dynamic control and aerodynamics.
“Lamborghini is intent on leading the advance to the highest level of super sports car technologies and driving emotion. This is the essence of the new Huracán EVO. It takes the extraordinary abilities of the Huracán Performante and combines state-of-the-art vehicle dynamic control to amplify the everyday Huracán driving experience,” says Stefano Domenicali, Chairman and Chief Executive Officer of Automobili Lamborghini. “The Huracán EVO is the very definition of evolution: it is a step ahead, redefining the segment parameters. It is remarkably easy to drive, while delivering the most responsive, sensory and agile driving experience, in every environment.”
Technological evolution amplifies driving emotion
The Huracán EVO features the 5.2 l naturally-aspirated Lamborghini V10 engine, uprated to produce higher power output and an emotional and powerful sound, with Titanium intake valves and refined lightweight exhaust system. The Huracán EVO outputs 640 hp (470 kW) at 8,000 rpm with 600 Nm of torque delivered at 6,500 rpm. With a dry weight of 1,422 kg the Huracán EVO reaches a weight-to-power ratio of 2.22 kg/hp, accelerates from 0-100 km/h in 2.9 seconds and from 0-200 km/h in 9.0 seconds. Braking from 100 km/h to 0 is achieved in just 31.9 m, with a top speed of more than 325 km/h.
Lamborghini Dinamica Veicolo Integrata (LDVI)
The Huracán EVO features new Lamborghini rear-wheel steering and a torque vectoring system working on the four wheels, while at the heart of the car is the new feature of Lamborghini Dinamica Veicolo Integrata (LDVI): a Central Processing Unit that controls every aspect of the car’s dynamic behaviour, fully integrating all of the car’s dynamic systems and set-up to anticipate the next move and needs of the driver, interpreting this into perfect driving dynamics.
Lamborghini Piattaforma Inerziale (LPI), a comprehensive set of accelerators and gyroscope sensors placed at the car’s center of gravity, has been enhanced to version 2.0. With improved precision, it monitors in real-time the dynamic vehicle attitude regarding lateral, longitudinal and vertical accelerations, as well as roll, pitch and yaw rate. The magneto rheological suspension, upgraded to version 2.0, instantaneously adapts the damping following inputs from the LPI. A new advanced traction control system together with enhanced all-wheel drive and torque vectoring, allows traction to be directed to a single wheel as required.
Enhanced Lamborghini Dynamic Steering (LDS), able to provide higher responsiveness in corners while requiring the lowest steering angles, is now coupled with rear-wheel steering in order to ensure agility at low speed, as well as maximum stability in high-speed cornering and under braking in the most severe conditions.
The unique combination of all these systems is governed by Lamborghini’s LDVI to create a super-agile and responsive car with unparalleled level of control. Processing data in real time, the Huracán EVO recognizes the driver’s intentions through steering wheel, brake and accelerator pedal inputs, engaged gear and the driving modes selected via ANIMA controller: STRADA, SPORT or CORSA.
External conditions are determined through active suspension and all-wheel drive grip estimation function. All of this information is analysed and processed by LDVI, which turns them into precise inputs for the vehicle dynamic system. A ‘feed forward logic’ is implemented via the dynamic controller, which means the car doesn’t just react, but predicts the best driving set-up for the next moment.
In STRADA, the Huracán EVO is agile and capable for driving enjoyment, whereas in SPORT it becomes playful, intuitive and extremely exciting. In CORSA the Huracán EVO is sharp, reactive and exhilarating for the most extreme driving environments, such as racetracks.
higher order function 在 JavaScript 什麼是Higher Order Function? - 菜鳥工程師肉豬 的相關結果
A higher-order function is a function that does at least one of the following: takes one or more functions as arguments; returns a function as ... ... <看更多>
higher order function 在 高階函數- 維基百科,自由的百科全書 的相關結果
def f(x): return x + 3 def g(function, x): return function(x) * function(x) print g(f, 7). 下列是Scheme語言的例子,函數g()有一引數以及回傳一函數。 ... <看更多>
higher order function 在 Higher-order function - iT 邦幫忙 的相關結果
Higher -order function. Functional Programming in JS 系列第11 篇. hannahpun. 1 年前‧ 2262 瀏覽. ... <看更多>