物聯網的資安攻防大戰!臺灣該如何見招拆招?
110/09/22
曾繁安
科技大觀園特約編輯
資策會資安科技研究所王仁甫策略總監專訪
5G 科技讓萬物聯網的新紀元已經來臨,代表著機器與機器溝通,人類過上全自動化的超便捷生活不再是夢。但這同時也意味著科幻電影中,邪惡駭客組織攻占重要機關的主機系統,引發一連串資安問題,甚至攸關社會國家安危的重大事件,也可能在現實中發生!
科技帶來的便利與風險並存的這個世代,來聽聽資安專家——資策會資安科技研究所王仁甫策略總監的精彩分享,一起思考 5G 物聯網下面對的資安挑戰。
一起跟資安達人瞭解 5G 如何翻轉我們的生活!
「16 年前一個月黑風高的夜晚,博士班學姐的一通電話,讓我踏上資安這條不歸路……」
問起投入資安領域的契機,王總監用打趣的口吻開場。當時在學姐的建議下,他參與了設計國内第一個資安指標的工作,從此開啓與資安的不解之緣。自稱「資安界 56 哥」的王總監,雖非一般人熟悉的另一位仁甫兄,但他對科技資安研究的敏銳觀察與豐富經驗,肯定令人甘拜下風。
他談到,4G 網絡的發展令網紅經濟崛起,你我都不曾想像『點讚、訂閲、打開小鈴鐺』會變成一種常態。而接下來的 5G 物聯網,將帶來更大的轉變與衝擊。
為什麽比起 4G,5G 有「大頻寬、高速率、低延遲」的特性?這是因為目前 4G 所在電磁波區間(約 450 MHz ~ 3800 MHz)已塞滿用戶,讓網速變得越來越慢,因此人類便把腦筋動到頻率更高的毫米波頻段(約30 GHz ~ 300 GHz)。增加了 5G 的區段,就像從塞爆的車流中,移到空曠的新路上。而頻率越高,頻寬也越寬,這條道路不止空曠而且比原先的更寬闊,於是訊息的傳遞能暢行無阻,理論上可比 4G 快一百倍!
「5G 最重要的,就是可以達成邊緣運算(Edge Computing)。」
王總監舉例,自動駕駛和遠距醫療還未普及,是因為傳統仰賴的雲端運算(Cloud Computing),傳輸訊息的速度不夠快,且成本高。雲端運算可以比喻作中央集權制,凡事都要經過朝廷皇上批閲議決,效率自然較低;但邊緣運算就像地方分權,讓數據可以直接在收集端附近實時處理和分析,無需先上報到雲端進行存儲、管理和分析運算,節省了上傳等待運算的時間,也減輕網絡和服務器的負擔。
在高速公路和手術檯上,微秒之差就是生死關頭。而 5G 搭配邊緣運算,大大提高的數據傳輸速率與極低的延遲,讓自動車之間可以維持安全的相對距離,遠端控制的手術刀可以精準無差地落在正確的部位。
也有賴於 5G 科技,需要大量運算資源的人工智慧(Artificial Intelligence,AI)也可以實現。這些發展促成物聯網(Internet of Things, IOT)的建立,機器和機器之間可以達成溝通,整合各方數據資訊,迅速有效率地完成各種指令。小至個人智能家居,大至工廠機械、重要基礎設備如水壩、發電廠等等,都能踏入數位自動化的新境界。
越方便就越危險?機器與機器的連接也要小心
不過,5G 的特性也改變了用戶與網絡間的關係。傳統 4G 是直鏈狀的系統,由電信商自上而下提供網絡,再經由應用程式界面(Application Programming Interface,API)提供服務給用戶,存在一個封閉式的層級關係。但速率快、訊號覆蓋範圍較小的 5G(注1), 則是由邊緣端、應用裝置及用戶組成,數據傳輸相互往來的三角形體系,不再有上下權限差別的限制。為了形成物聯網提供更多應用,5G 網絡也變得更對外開放,被駭入的風險也會提高。
研究專長為駭客行爲的王總監提到,如今網絡犯罪的作案手法越來越多元。過去搶匪洗劫銀行,還要擔心實體鈔票金條太重,扛不動。現在駭客只要動一動手指,就能利用惡意程式讓銀行的上億元瞬間消失;或使用勒索病毒,鎖定廠商的資料庫,再以巨額款項要挾,否則就把重要生產機密銷毀或公諸於世。
「5G 應用得越深,危害的情境就越高。」
未來 5G 物聯網可能面對的兩大資安威脅,包括用戶 IP 可能被駭入後,可能被用作惡意中繼站或跳板繼續攻擊另一方,讓受害者同時也成了加害者。再來,當物聯網涉及的層面越來越廣,假如被不法分子入侵掌控的是自駕車、基地台,甚至是重大國家基礎建設如水壩、發電廠等等,造成的損失傷害不堪設想!
網絡戰資訊戰開打,台灣如何接招還擊?
從個人角度,平時養成謹慎小心的習慣,不隨便亂點不明連接,隨時留意最新的網絡犯罪手法,是保護自己的不二法門。但在通訊科技發達的今時,第三次世界大戰很可能就在網路上發生,資安可是攸關國家安危的重大議題。
自 2016 年起,台灣便喊出「資安即國安」的口號,而王總監也參與在草擬「資安即國安」1.0 與 2.0 戰略的工作中。在1.0 戰略中,首要步驟就是將資安鐵三角(資訊安全、通訊安全、國家安全)正規化。政府也修訂相關法規,將資訊和網際空間延伸為國家主權的一環,並把駭客攻擊與竊取智慧財產,納入情報蒐集的工作,才能為網絡戰做好準備。
「守護要自己來,就需要有人才。沒有資安人才,就沒有基礎的資安;沒有錢投入,也不會有資安人才。」
王總監强調,一個國家的資安要做好,最重要的就是資源與人力的投入。如果國内資安產業沒有妥善發展,資安人才缺乏,就必須仰賴國外的產品。若系統程式都不是由自己人開發,而是假手於他人,便難以確保檢測過程的可靠性,往往等到資安事件發生後,才驚覺漏洞的存在。因此,政府也編組了多支專業團隊,培訓資通電軍與資安產業人才,為國内資安把關。
而「資安即國安 2.0」的重點,除了規劃新設數位發展部、成立專責的資通安全署,就是主動式防禦(注 2)——與其乖乖等著被人打,不如自己先請外部團隊攻擊自己,作資安測試,去找出資安漏洞和弱點!舉例來說,業界為了找出系統防禦上的漏洞盲點,常會委外進行紅隊演練(Red Teaming)。就像在進行軍事演習,紅隊扮演進攻方,以無所不用其極的方法嘗試入侵,同時驗證藍隊防守方的偵測與回應能力。這樣的演練成本可不低,一次就要三五百萬臺幣起跳。
但台灣不用付錢,就有免費的資安攻防演練!王總監如此笑言。這是因為,在全球最常受駭客攻擊的國家排行榜上,台灣可是位居前列。根據網路資安商 Fortinet 的報告,2021 年第一季台灣遭受到超過兩百萬次的駭客攻擊,平均每分鐘就會遭遇逾 15 次的攻擊!所謂危機就是轉機,這些源源不絕的攻擊,也讓台灣深具適合發展資安產業的龐大潛力。王總監認為,資安產業要像台灣未來的台積電,扮演護國神山般的角色。
想投身資安產業?不需要獻出心臟,只要有一顆熱忱的心
「投入資安產業不要限科系,但是要有一顆熱忱、學習的心。」對於有心想往資安領域發展的年青人,王總監給出這樣的建議。
雖非資訊科學出身,但大學的工程背景,讓王總監有了程式語言的基礎。後來他取得經濟學、法學雙碩士,前者使他瞭解產業界的趨勢走向,法學則令他知曉資安重合規性與合法性的重要。在科技管理與智慧財產權領域的博士論文中,他則從社會學、科技研究的方法分析駭客行為。他表示,跨領域的學習可以讓他從更廣濶的視角,釐清各方問題之後,找到痛點,來提供更好、更全面的科技與資安政策。
王總監指出,這一代除了要與人溝通,還要學會與機器溝通,所以掌握好程式語言的邏輯基礎是重要的,因此王總監所在的資策會資安所,除了研發研發資安監控平臺,將研發的成果技轉給業界,同時他也擔任台灣駭客協會(HITCON)理事和社團法人臺灣校園資訊安全推廣暨駭客培育協會(TDOH)理事,推展培育資安人才的各項活動,未來希望能舉辦小朋友駭客營,讓孩子在小學階段就能接觸和體會程式語言是有趣的。他也勉勵年輕人,能力好的可以負責找漏洞和抵禦攻擊,站在資安攻防戰最前線;即使程度不夠拔尖,也可肩負資安維運的工作,在各自的崗位上適才所用,都能為守護資安和國安,盡一份心力。
根據光速等於波長乘以頻率(c = f × λ)關係式,我們知道頻率越高的波段,波長越短,穿透能力強。所以 5G 電磁波訊號遇到障礙物時,會想强行穿越而非「繞」過,繞射能力弱,造成散失的能量大。因此 5G 雖然有著高速率、低延遲的優勢,弱點就是訊號覆蓋範圍小,故需要設置夠多的基地台方可實現,而電信服務商會提供用戶建設專網——既不同於覆蓋範圍大的公網,而是擁有特地目的、獨立運作的網絡系統。
此外,主動式防禦也包含三要素:歸因、阻斷、減災。歸因便是找出攻擊的背後原因,釐清駭客的犯案動機,才能對症下藥。再來,對惡意程式來源進行阻斷,往後才可以減少再次被入侵的風險。
附圖:王仁甫
和台灣知名藝人同名同姓的王總監,説話風趣幽默,整個採訪過程充滿笑聲。圖/台灣資安大會
邊緣運算架構
邊緣運算架構與傳統雲端架構不同的地方是,資料將改放在網際網路和本地網路之間的邊緣運算層作處理,等資料變少了,再將處理後的資料回傳雲端。
攻擊
台灣平均每分鐘就會遭遇逾 15 次的攻擊,源源不絕的攻擊讓台灣深具適合發展資安產業的龐大潛力。圖/pexels
資料來源:https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=0853796d-0b42-4a72-a0cb-ed70ddad9f77&fbclid=IwAR2H03H3PtQ6JhtQIy6KpMaz78iFa7NBgfizoTzEbAGba_58W6guaSHYBkg
edge ai優勢 在 StarFab Accelerator Facebook 的精選貼文
💥 #StarFab特報 💥 第六期 產業優勢+聯盟策略 AI生態系搶攻國際
近期甫完成A輪募資的 InfinitiesSoft 數位無限軟體 透過平台型產品「AI-Stack」協助客戶快速建立AI運算環境去進行AI模型的開發與機器學習訓練,同時更鏈結了許多生態夥伴在AI-Stack Ecosystem中共同堆疊出更多的應用場景與AI解決方案,策略聯盟共創AI產業新機。
此期我們很開心邀請到 第二屆 台灣雲谷雲豹育成計畫 的大學長 #數位無限 陳文裕 總經理 來分享AI產業的全球佈局機會與募資經驗談!
📌 台灣產業在人工智慧應用上面臨的挑戰及產業優勢為何?
📌 如何鏈結大企業並取得商業訂單?
📌 新創如何選擇適合的投資人?
⭐️【StarFab特報】第六期:https://pse.is/3ms8g7
💥 #StarFabNewsletter 💥 Issue 6
Competitive Advantages with Strategic Alliances
to Enter the Global Market in Artificial Intelligence
Just completing an A round of fundraising, InfinitiesSoft helps its clients establish an AI computing environment on AI-Stack to combine their knowledge with machine learning. Also, InfinitiesSoft has enabled many ecosystem partners to stack more tools or AI applications to promote the business development in AI industry through strategic alliances.
In this week’s issue, we will be sharing how InfinitiesSoft Solutions Inc., a firm that was the runner up on Demo Day for the 2014 CIAT Accelerator Program, positions itself in the global market and keeps its competitive edge in the AI industry with Wenyu Chen, General Manager of InfinitiesSoft!
📌 What are the challenges and advantages of the AI application in industries in Taiwan?
📌 How do startups connect with big companies and get orders from them?
📌 How do startups choose the right investors?
【StarFab Newsletter】Issue 6:https://pse.is/3p3sgp
------------------------------------
【Follow us】
Website:https://www.starfabx.com/
Facebook:https://www.facebook.com/StarFabX
Twitter:https://twitter.com/starfabx
Youtube:https://pse.is/3lb5g4
Linkedin:https://www.linkedin.com/company/starfab
Medium:https://medium.com/@starfabaccelerator
edge ai優勢 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
邊緣AI 2026將成 IoT晶片發展核心
04:102021/05/02 工商時報 集邦科技資深分析師曾伯楷
隨著智慧工廠、城市等場景對數據分析越發需要精準、即時且大量處理的需求,AI與IoT結合已是現在進行式。在AI晶片助益下,IoT邊緣與終端裝置可透過機器學習或深度學習等技術加值,同時帶出無延遲、低成本、高隱私等優勢,顯示出AI晶片的重要性。預估全球AI晶片產值至2025年將達720億美元。
與此同時,邊緣運算透過AI使終端設備於運行上更加智慧,不僅保有邊緣運算於延遲性、隱私性、連接性、功耗、成本等優勢,並進一步使系統具有主動性與智慧性。若以場景角度切入,邊緣AI相較傳統邊緣運算,其主要帶來的效益包括數據處理過濾和邊緣智慧分析,此也將成為兩技術持續結合的動能。
一、MCU、連接晶片、AI晶片為IoT晶片產業鏈三大關鍵零組件。 物聯網在傳統上多以感知層、網路層、系統層與應用層作為架構堆疊,主要經濟效益雖來自應用層的智慧情境發展,然感知層所需的產業鏈之上游零組件仍是支撐終端場景運作重要核心,其中又以微控制器(MCU)、連接晶片與AI晶片最關鍵。
MCU方面,建立在高效能、低功耗與高整合發展主軸下,IoT MCU現行從通用MCU演化成特定為IoT應用或場景所打造,如2021年3月STMicroelectronics推出新一代超低功耗微控制器STM32U5系列,可用於穿戴裝置與個人醫療設備;Silicon Labs同期推出PG22 32位元MCU,主打空間受限且須低功耗的工業應用、Renesas RA4M2 MCU著眼IoT邊緣運用等。
連接晶片方面,受物聯網設備連線技術與標準各異影響,通訊成物聯網晶片中相當重要的一環,從蜂巢式的4G、5G、LTE-M、NB-IoT,到非蜂巢式的LoRa、Sigfox、Wi-Fi、Wi-SUN等,從智慧城市、工廠、家庭至零售店面皆被廣泛運用,範圍擴及至太空,如2020年下旬聯發科與國際航海衛星通訊公司(Inmarsat)合作,成功以NB-IoT晶片完成全球首次5G物聯網高軌衛星資料傳輸測試。AI晶片方面,隨著智慧工廠、城市等場景對數據分析越發需要精準、即時且大量處理的需求,AI與IoT結合已是現在進行式。此外,Microsoft在其2021年3月舉辦的年度技術盛會Ignite 2021上指出,2022年邊緣運算市場規模將達到67.2億美元,與深度學習晶片市場相當吻合,亦提及市場預估至2025年全球深度學習晶片市場將有望達663億美元。同時,Microsoft認為至2026年全球AI晶片有3/4將為邊緣運算所用,顯示出IoT晶片於邊緣運算的發展將成未來廠商重要布局之一。
二、邊緣AI效益顯著,成長動能仰賴數據處理過濾、邊緣智慧分析。
首先,從邊緣運算定義來看,市場雖已談論數年但定義與類別始終未統一,原因是各廠商於邊緣託管工作的目的不盡相同。例如對電信商而言,初步處理數據的微型數據中心是其邊緣端,而對製造商來說邊緣裝置可能是生產線的感測器,此也造就邊緣運算的分類方式略有出入。另外,例如IBM有雲端邊緣、IoT邊緣與行動邊緣的類別,ARM多將邊緣視為雲端與終端間的伺服器等裝置,亦有個人邊緣、業務邊緣、多雲邊緣等類型。
其次,從邊緣運算類別來看,現行分類趨勢和研究方式尚有以數據產生源為核心,藉由設備與數據源的物理距離作為分類參考,並將其分為厚邊緣(Thick Edge)、薄邊緣(Thin Edge)與微邊緣(Micro Edge)。厚邊緣多用以表示處理高數據流量的計算資源,並配有高階CPU、GPU等,例如數據中心的數據儲存與分析;薄邊緣則包含網路設備、工業電腦等以整合數據為主要目的,除了配有中間處理器外,也不乏GPU、ASIC等AI晶片;微邊源因與數據源幾無距離,故常被歸類為生成數據的設備或感測器,計算資源雖較為匱乏,但也可因AI晶片發揮更大效益。
整體而言,邊緣運算透過AI使終端設備於運行上更加智慧,不僅保有邊緣運算於延遲性、隱私性、連接性、功耗、成本等優勢,並進一步使系統具有主動性與智慧性,在平台管理、工作量合併與分布式應用也更有彈性。若以場景角度切入,邊緣AI相較傳統邊緣運算,其主要帶來的效益提升包括數據處理過濾和邊緣智慧分析,此也將成為兩技術持續結合的動能。
數據處理與邊緣分析於過往邊緣運算時已可做到,並在AI加值下進一步提升效益。以前者而言,數據透過智慧邊緣計算資源可在邊緣處預先處理數據,且僅將相關資訊發送至雲端,從而減少數據傳輸和儲存成本;從邊緣分析效能來看,過往多數邊緣運算資源處理能力有限,運行功能時往往較為單一,而邊緣智慧分析透過AI晶片賦能,進而能執行更為繁複、低延遲與高數據吞吐量的作業。
三、全球大廠搶攻IoT晶片市場,中國加重AI晶片發展力道。
IoT晶片於邊緣運算所產生的效益,使其成為廠商重要策略布局領域,雲端大廠如Google、AWS等紛紛投身晶片自製;傳統晶片大廠如ARM最新產品即鎖定邊緣AI於攝影機和火車的辨識應用、Intel亦投資1.3億美元於十餘家新創AI晶片設計廠商,NXP Semiconductors、Silicon Labs、ST則陸續在其MCU或SoC添加邊緣AI功能。此外,新創企業Halio、EdgeQ、Graphcore皆以AI晶片為主打。整體而言,若以區域來看,歐美大廠聚焦加速AI運算效能,但最積極發展AI晶片產業的則屬產官學三方皆支持的?心,代表性廠商包含地平線、華為旗下海思等代表;台灣則由產業聯盟領頭與聯發科和耐能等重要廠商。
(一)中國產官學助力,2023年AI晶片產值估將逼近35億美元。
AI產業是中國發展重點之一,其輔助政策如2017年《新一代人工智能發展規劃》、《2019年促進人工智能和實體經濟深度融合》,至「十四五」與「新基建」,都將AI視為未來關鍵國家競爭力。各大廠也因此陸續跟進,如百度發布AI新基建版圖著眼智慧雲伺服器;阿里宣布未來至2023年將圍繞作業系統、晶片、網路等研發和建設,騰訊則聚焦區塊鏈、超算中心等領域。
產官學研加重AI的發展力道也反映於AI晶片上,ASIC(特殊應用基體電路)廠商比比皆是。其中,AI晶片布局物聯網領域的廠商眾多,包含瑞芯微、雲天勵飛、平頭哥半導體、全志科技等,主要面向雲端運算、行動通訊、物聯網與自動駕駛四大領域。其中,物聯網領域進一步聚焦於智慧家庭、智慧交通、智慧零售與智慧安防部分,執行語音、圖像、人臉與行為辨識等應用。若進一步聚焦於邊緣運算領域,則以地平線、寒武紀、華為海思、比特大陸、鯤雲科技等最為積極。整體而言,TrendForce預估,中國AI晶片市場有望從2019年13億美元增長至2023年近35億美元。
綜觀中國AI晶片發展,雖有中美貿易摩擦導致設計工具、製造封測等環節較受限制,且開發成本始終居高不下,然而,藉由產官合作以及中國內需市場需求動能,仍能有效支撐該產業成長。若以邊緣運算來看,鑒於AIoT市場持續茁壯,特定應用的ASIC將是重要發展趨勢,尤以汽車、城市與製造業來看,相關場景應用如人身語音行為辨識、人車流量辨識、機器視覺等需求皆相當明朗,預期也將成廠商中長期發展主軸。
(二)台灣人工智慧晶片聯盟積極整合,監控與機器人為邊緣AI應用兩大方向。
台灣廠商聯發科和耐能同樣結合邊緣運算與AI兩技術作策略布局,就整體產業而言,2019年由聯發科、聯詠、聯電、日月光、華碩、研揚等廠商共同組成的台灣人工智慧晶片聯盟(AITA)發展迄今已越趨成形,各關鍵技術委員會(SIG)亦訂定短中長期發展目標。
邊緣AI發展則由AI系統應用SIG推動,其第一階段至2020年著眼半通用AI晶片發展與智慧監控系統應用平台的裝置端推論,2021年則聚焦以裝置端學習系統參考設計,以及軟硬體發展平台的裝置端學習為主,並規劃在2023年能以多功能機器人為主體,發展多感知人工智慧和智慧機器人AI晶片發展平台。
換言之,藉由業界在智慧裝置、系統應用與AI晶片的串聯,短期至2022年都將是台灣邊緣AI大力發展階段,並朝智慧監控、多功能機器人深化,預期此也將帶動系統整合的凌群、博遠,終端設備的奇偶、晶睿碩,以及晶片設計的聯發科、瑞昱等邊緣AI商機;但相較中國廣大內需市場,台灣仍需藉由打造讓晶片廠和系統商充分整合的互補平台,以利降低晶片開發成本,並從其中尋求更多可供切入的大廠產業鏈。
附圖:2019~2023年中國AI晶片市場推估
AI於IOT流程主要著眼數據處理與分析之效
台灣人工智慧晶片聯盟系統應用SIG發展架構
資料來源:https://www.chinatimes.com/newspapers/20210502000153-260511?fbclid=IwAR0zlvUv8MKpcHrbgpa3xRAFaQXaxZuep9TCeZ-75myILNjuDV4SWEIdKZ8&chdtv
edge ai優勢 在 新型態物聯網平台(上) Edge & AI的趨勢與應用 - YouTube 的美食出口停車場
如何進一步結合軟體與應用,還有邊緣運算、人工智慧的技術加持,甚至進一步在不同垂直市場中建立自身 優勢 ,則成了現今業者極力發展的方向。 ... <看更多>
edge ai優勢 在 Edge AI 線上教學課程分享給大家 - Facebook 的美食出口停車場
·Edge AI 線上充電課. Edge AI為AI應用的起點與落地之處. 台灣在這塊領域有極大的發展優勢. 為此我們上線了技術探討研究課程. 影片中討論影像辨識與智慧工廠. ... <看更多>