小米秋季新品發佈會,正式發佈高階旗艦系列新品小米MIX 4,搭載全新CUP全面屏技術,讓螢幕既能無任何孔洞完美顯示,但這款似曾相似的仿生四足機器人比較吸引我注意。
--
CyberDog彙集小米11年的技術沉澱,是工程師文化和創新精神的深度凝結,也是小米對於未來科技生活的再次探索。CyberDog搭載小米自主研發高性能伺服馬達,具備強大運算能力與強勁動力,內建超感視覺探知系統和AI語音互動系統,支援多種仿生動作與姿態,是一個來自未來的「科技夥伴」。
小米承諾將仿生四足機器人研發成果向全球深度開源,限量開放1,000個工程探索版與擁有極致探索精神的米粉、極客發燒友合作共創,透過技術探索讓CyberDog實現更多「超能力」。CyberDog工程探索版定價人民幣$9,999元。
強勁性能,高精度環境感知
CyberDog內建小米自研高性能伺服馬達,提供32N·m最大輸出扭矩、220rpm最大轉速以及3.2m/s最大速度,能保證高扭矩的同時兼具高速性能,做到靈動回應。強大的性能支援讓CyberDog能夠輕鬆完成各類高速運動及後空翻等高難度動作。
如果將馬達比喻成心臟,那麼邊緣AI超級電腦就是CyberDog的大腦。大腦內建了NVIDIA JETSON XAVIERNX平台,內建384個CUDA® Cores、48個Tensor Cores、6個Carmel ARM CPU和兩個深度學習加速引擎,可處理來自多個感測器的大量資料。
感測器決定了CyberDog感知能力的上限。CyberDog內建高精度環境感知系統,可還原更真實的生物反應。她全身擁有11個高精度感測器時刻待命,可主動探測外部細微變化。其中包括觸摸感測器、鏡頭、超音波感測器、GPS模組等,基於此可衍生更符合生物直覺的交互功能,以及環境感知、分析能力。
超感視覺,智慧互動陪伴
小米將手機影像的技術延伸至仿生機器人領域,讓CyberDog實現空間感知能力。CyberDog支援超感視覺探知系統,通過AI互動相機、雙目超廣角魚眼相機、intel® RealSense™ D450深度鏡頭打造硬體基礎,透過電腦視覺,檢測辨識使用者相關資訊,為使用者提供更智慧化的視覺使用體驗。
CyberDog內建超感視覺探知系統,可實現自主辨識跟隨、SLAM建圖和導航避障功能。技術層面,小米透過人形檢測技術和行人重辨識技術保障了跟隨功能的穩定,使用人臉辨識技術讓CyberDog具有寵物化特徵,滿足跟隨主人的場景需求,最終讓她能在室外空曠平整的環境中跟隨主人。借助多個感測器的協作,感知目前環境,透過演算法建立導航地圖,並自動規劃到下一目標點的最優路線。在導航及跟隨過程中均能達到自主規避障礙物。
使用者可透過語音、遙控器、手機多種方式操控CyberDog,以「鐵蛋鐵蛋」喚醒詞向CyberDog下達指令。目前小米智慧語音已應用於8大互動場景,導入超過72個品類,3000餘款裝置。現在,這項技術將運用有溫度的溝通,喚醒未來智慧活新方式。
深度開源,共創無限可能
作為開源產品,CyberDog具備豐富的外部設備擴充能力,她擁有3個Type-C和1個HDMI介面,可以外接探照燈、全景相機、運動相機、雷射雷達等多種擴充設備,開創更多應用場景。另外CyberDog整機支援生活防水,可應對多種複雜使用環境。
小米致力於打造一個仿生四足機器人開發平台,透過程式碼開源和開源社區的方式,改善機器人開發環境,推動機器人行業發展。小米將仿生四足機器人研發成果向全球深度開源,開放1,000台工程探索版,與擁有極致探索精神的米粉、極客發燒友共創。小米社區的「CyberDog圈子」將打造良好的共創環境,為極客用戶們提供交流競賽的平台。小米還將設立小米機器人實驗室,邀請更多工程師一起探索更酷、更好玩的未來。
同時也有10部Youtube影片,追蹤數超過10萬的網紅Jonstyle,也在其Youtube影片中提到,《消防指揮官》將讓玩家率領一群消防員來面對大火,玩家要面對各種環境與危險,想辦法撲滅大火、搶救受困民眾與設備,甚至面對有毒物質等。玩家可以想辦法運用不同的載具、專業知識與工具,將其組合運用,以面對突發性的各種狀況,但別忘了考慮像是濃煙、不同材質的燃燒溫度與回燃等問題。 🔥追蹤我們 facebook...
「cpu溫度顯示」的推薦目錄:
- 關於cpu溫度顯示 在 3c老實說 / 30天評測心得連載 / 投幣式編輯人生 / 氣象部落客勞倫斯 Facebook 的最佳貼文
- 關於cpu溫度顯示 在 Facebook 的精選貼文
- 關於cpu溫度顯示 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於cpu溫度顯示 在 Jonstyle Youtube 的精選貼文
- 關於cpu溫度顯示 在 TuTou Youtube 的最讚貼文
- 關於cpu溫度顯示 在 Huan Youtube 的最佳貼文
- 關於cpu溫度顯示 在 如何顯示顯卡溫度 - Mobile01 的評價
- 關於cpu溫度顯示 在 cpu溫度怎麼看2023-在Facebook/IG/Youtube上的焦點新聞和 ... 的評價
- 關於cpu溫度顯示 在 cpu溫度怎麼看2023-在Facebook/IG/Youtube上的焦點新聞和 ... 的評價
- 關於cpu溫度顯示 在 Jing - 如何在遊戲中顯示FPS、顯卡溫度、CPU占用的資訊?... 的評價
- 關於cpu溫度顯示 在 cpu溫度怎麼看的原因和症狀,MOBILE01、PTT、DCARD 的評價
- 關於cpu溫度顯示 在 cpu溫度怎麼看的原因和症狀,MOBILE01、PTT、DCARD 的評價
- 關於cpu溫度顯示 在 cpu溫度怎麼看的原因和症狀,MOBILE01、PTT、DCARD 的評價
cpu溫度顯示 在 Facebook 的精選貼文
【圖文開箱】Mobiscribe Origin 閱讀電子書/寫筆記的使用心得
閱讀器/筆記本二合一的輕巧機身,是外出一族的讀書筆記好幫手
👉部落格圖文 https://readingoutpost.com/mobiscribe-origin/
.
之前我曾經分享過 Mobiscribe 這個結合了「電子書閱讀器」和「電子筆記本」於一身的產品,它解決了我出門在外「一站滿足閱讀+筆記」的需求。在最近,第二代最新版的 Mobiscribe Origin 正式推出了,比起前一代,擁有更好的效能、更多樣的筆記用法、更方便的雲端和分享功能。
.
【Mobiscribe Origin 適合怎樣的人?】
.
我自己在週末外出的時候,以往總是帶著厚重的紙本書奔走,還會帶著筆記紙和原子筆隨時記錄讀書筆記,但是 Mobiscribe Origin 讓我能夠享受「閱讀器/筆記本二合一」的特性,出門在外的閱讀和書寫變得輕鬆許多,我認為它很適合以下幾種人:
1. 時常出門在外,喜歡電子書閱讀器「輕薄、好攜帶」特性的人。
2. 隨手讀完電子書,想要馬上「寫下靈感和想法」的人。
3. 需要把電子筆記的書寫內容,快速同步到「雲端」的人。
而且,在第一代 Mobiscribe 擁有的基礎之上(電子書閱讀器、電子筆記本),第二代的 Mobiscribe Origin 新增了許多功能:OCR 手寫文字辨識、筆記加入圖片和表格、Mobi Mail 雲端同步、Mobi Share 筆記同步協作、Mobi Store 商店。加上 CPU 效能的提升,讓各家書成的閱讀 App 運作起來更加流暢,是一個不受電子書平台綁定的開放式閱讀器。
.
【Mobiscribe Origin 開箱介紹】
.
首先是「機身本體」,有別於智慧手機和平板電腦的藍光螢幕毒酒眼睛會不舒服,Mobiscribe Origin 的螢幕採用採用 6.8 吋的 「E-ink Carta 電容式觸控電子紙」面板,其中電子墨水的顯示特性就是本身並不會發光,而是靠環境光照亮,或者是昏暗環境搭配閱讀器本身的輕微背光,讓我們在讀起電子書的時候眼睛並不會吃力。外出攜帶也很方便,輕薄短小的機身尺寸為 13.2 公分 x 17.5 公分 x 0.98 公分。
接著是 Mobiscribe Origin 的「保護套」,左側有一個淺夾層,可以用來夾一些紙張或名片。右側則是黏貼機身的區域,對好位置之後就可以把機身貼到保護套上面。最右邊附有一個彈性筆套夾,用來固定觸控筆。
最後是「Wacom 觸控手寫筆」,這是一支擁有 4096 個感應位階的觸控筆,也就是說你可以「輕巧」地書寫出很細的筆觸,也可以「重壓」描繪出粗曠的線條。把這支觸控筆的尾端反過來在螢幕上按壓,還可以當作「橡皮擦」,擦去書寫過的筆跡。由於筆芯用久了會損耗,因此包裝裡面還附了三個備用筆芯。充電線的部分則是 Type-C 接頭,付了充電線一條。
.
【電子書閱讀器使用心得】
.
我自己常用的電子書城是 Kobo 和 Pubu 這兩家,因此拿到 Mobiscribe Origin 的時候,我就先把這兩家的閱讀 App 裝了上去。其中 Kobo App 有內建在裡面,但是 Pubu 則需要另外下載,你可以前往 APKPure 下載 Pubu App 之後,透過 USB 傳輸線把檔案丟進 Mobiscribe Origin,再從檔案夾內安裝就可以馬上使用。
如果你不喜歡主畫面的捷徑(預設是:筆記、書籍、行事曆、應用),你可以像我一樣「自訂捷徑」。點選:右上角齒輪設定 > 顯示 > 自訂捷徑,然後把想要替換的捷徑換成自己常用的 App,像我是把 Kobo 和 Pubu App 替換上去。
新版的 MobiScribe Origin 因為升級成 Allwinner B300 處理器,又搭載 Android 8.1 作業系統,因此安裝第三方閱讀 App 的運作效能提升了許多。比起前一代的 MobiScribe 只能忍痛使用內建閱讀器,這款新的 Origin 我安裝的 Kobo 和 Pubu App 運作起來都順暢許多。
我還發現一個 Pubu App 很貼心的功能,也就是在 Pubu App「Setting」裡面有一個「Enable E-ink Reader Mode」的功能,開啟之後 App 會把許多不必要的特效關閉,讓你在使用電子閱讀器運作 App 時獲得最好的效能。我自己實際的感受差異頗大,還沒開這功能的時候,翻頁延遲感很重。一旦開啟這個功能,翻頁就顯得順暢許多。
.
【電子筆記使用心得】
.
這一代的「觸控手寫筆」搭配升級後的處理器,書寫起來十分流暢,無論是普通的鉛筆/鋼筆寫字,或者是切換成水彩筆繪畫,輕壓、重壓帶來的不同筆觸都十分令人驚豔。根據網友分享的資訊,台北的三創生活園區七樓有實體機展示,如果你對觸控筆在電子紙上面的書寫表現有興趣,可以前往實際書寫看看。
最基本的電子筆記功能如下圖所示,除了普通的筆記檔案之外,你可以自行創建資料夾,收納不同類別的筆記檔案。在創建一個新的筆記檔案時,你可以選擇「直式」或「橫式」的書寫方式。一般來說如果是條列式的紀錄,或者讀書筆記的句子摘錄,我會選擇直式。如果是畫「心智圖」和其他圖形的草稿,我會選擇橫式。
我通常寫完一系列筆記之後,如果想要存在雲端備份,Mobiscribe Origin 也內建了很方便的雲端功能。可以針對你想要備份的筆記點選「轉存」,然後再儲存位置選擇你想要儲存的方式,直接同步「雲端 Dropbox」和透過「電子郵件」寄出都可以。你也可以直接寄到朋友的電子信箱,Mobiscribe 會連線到它自己的 Mail Server 幫你發信出去,信中就會夾帶這份筆記檔案。
筆記除了預設的白底色背景之外,MobiScribe Origin 可以讓你套用任何自定義的「背景模板」。內建提供了12種模板,你還可以在應用區裡面的「模板下載區」找到更多客製化的模板。如果還嫌不夠,Mobiscribe 的 Facebook 社團也有許多網友提供的自製模板(PNG圖檔)可以下載。除此之外,你也可以定義三組不同設定的「自訂筆觸」,這樣就可以靈活切換鉛筆、鋼筆、水彩筆…等不同粗度、寬度、濃度的設定。
這次的 MobiScribe Origin 讓我印象深刻的一個新功能就是「OCR 手寫文字辨識」,它可以辨識一整頁的手寫筆記,自動轉換成文字檔,而且還支援繁體中文字的辨識。底下簡單示範一個非常潦草的筆記內容(當初心想這麼醜的字真的能轉嗎?),點擊 OCR 轉換之後大概等 15~20 秒左右,文字辨識的結果就轉換出來了。可以看得出來辨識成功率是滿高的,我這麼醜的字還可以轉成功…
最後,最新這一代的 MobiScribe Origin 還有一個「Mobi Share 筆記同步協作」的功能,如果你跟朋友/同事都擁有 MobiScribe Origin,就可以把筆記本設定成「同步協作」模式,彼此在筆記本上面做的任何更改,都會即時同步到對方的螢幕上。但是我還沒有試過協作的功能(有人要跟我連線嗎XD?),所以僅附上官方 Youtube 的示範影片給大家參考看看。
.
【總結:外出一族的讀書筆記好幫手】
.
整體而言,我的使用經驗圍繞在「閱讀電子書」和「紀錄讀書筆記」上面,讓偶爾外出的我,可以很輕盈地帶著 Kobo 和 Pubu 電子書庫出門,又可以隨時靈感湧現就把想法記錄下來。我覺得 MobiScribe Origin 這類型的產品,同時滿足了電子書閱讀器的方便攜帶,又保留了手寫筆記加深記憶的效果,可以說是在虛實之間搭建起了一道橋梁。
這篇文章裡我沒有提到「電子行事曆」和其他「專案規劃筆記」的功能,是因為我並不習慣在電子產品上做這兩件事情。我習慣的仍是使用「子彈筆記」的紙本書寫方式去回顧、執行、規劃我自己的生活和工作,這種紙本的溫度和連結性,我認為是電子產品無法取代的效用。
最後,推薦 MobiScribe Origin 這款「閱讀器/筆記本二合一」給常有外出需要的愛看書朋友參考,或許可以為你的閱讀和筆記習慣帶來新的火花!
.
【其他資源】
.
1. MobiScribe中文討論區
2. udn Mobiscribe電子筆記本全台獨家販售:http://tinyurl.com/ybant9cv
3. 實體展示販售地點:三創生活園區7樓
.
👉部落格圖文 https://readingoutpost.com/mobiscribe-origin/
cpu溫度顯示 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
佈署 IoT Edge 和霧運算技術以開發智慧建築服務
2021年2月19日 星期五
《3S MARKET》這篇報導把物聯網的架構與實作,描寫的非常詳細,雖然在建築的細節上描述不多,但報導中也提及這是個實際驗證,可適用在很多的場域。不知道,有多少人真正看得懂?當然,連這篇都看不懂的人,就別說他真正了解物聯網、Edge 與 Cloud。
事實上這篇報導的描述不難了解,真正物聯網與邊緣運算的挑戰,是在實作。實作真正面臨的,是這些數據處理、融合、分析上的完整度,還有 —— 找到實作的場景!
摘要
基於 SoC 架構的嵌入式系統的進步,使許多商業設備的開發變得足夠強大,足以運行操作系統和複雜的算法。這些設備整合了一組具有連通性、運算能力和成本降低的不同感測器。在這種情況下,物聯網(IoT)的潛力不斷增加,並帶來了其他發展可能性:「事物」現在可以增加數據源附近的運算量;因此,可以在本地系統上,佈署不同的物聯網服務。
這種範例稱為「邊緣運算」,它整合了物聯網技術和雲端運算系統。邊緣運算可以減少感測器與中央數據中心之間,所需的通信頻寬。此方法需要管理感測器、執行器、嵌入式設備,和可能不連續連接到網路的其他資源(例如智慧手機)。這種趨勢對於智慧建築設計非常有吸引力,在智慧建築設計中,必須整合不同的子系統(能源、氣候控制、安全性、舒適性、使用者服務、維護和營運成本)以開發智慧設施。在這項工作中,分析和提出了一種基於邊緣運算範例的智慧服務設計方法。
這種新穎的方法,克服了現有設計中與服務的互操作性,和可伸縮性有關的一些缺點。描述了基於嵌入式設備的實驗架構。能源管理、安全系統、氣候控制和資訊服務,是實施新智慧設施的子系統。
1. 簡介
建築自動化系統使用開放式通信標準和介面,可以整合多種不同的建築控制規則,例如供暖、通風、空調、照明和百葉窗、安全功能和設備。但是,現有建築物通常不具有這些系統。
通常,每種安裝類型都提供特定的服務:供暖通風和空調(HVAC)控制氣候服務,攝影機和感測器提供安全服務等。僅當設計能源管理系統時,不同的子系統相關,但僅透過以下方式,連接建築物的能源管理系統。能源管理服務,集中在專用軟體中。
對於使用者和維護技術人員來說,提供不同服務的不同製造商,發現很難整合新的服務和功能。自動化建築將用於控制和數據採集的軟體,與工業協議和介面整合在一起。此外,將新服務整合到這種解決方案中並不容易,這取決於已安裝軟體的開發。
這些工業發展還為能源管理,提供了雲端連接解決方案和智慧服務。這些服務,也在集中式電腦系統中開發。數據被傳輸到這些系統或雲端進行分析。本文提出使用佈署在物聯網(IoT)技術中的邊緣和霧運算範例,主要有兩個目的:
A. 在自動化和非自動化建築物中,促進新的智慧和可互操作服務的整合(整合)。
B. 允許在建築物的所有子系統之間,分配智慧服務(互操作性)。
透過該建議,可以促進建築物子系統之間的關係。它還促進創建新的智慧服務(例如,新的分佈式智慧控制算法;使用電源管理捕獲的數據,來檢測人類活動;捕獲設備連接的模式辨識,運算可再生電力預測,在安全服務中使用電力數據等)。在這項工作中,我們設計了一個中間軟體的體系結構,該體系結構具有兩個主要層,這些層基於嵌入式設備、IoT 通信協議和硬體支援,來開發人工智慧算法(圖1)。
為了實現這一目標,我們在建築物的設施中添加了兩個概念等級:邊緣節點和霧節點。每個等級都有不同種類的設備和功能。我們佈署並實現了基於層的中間軟體的體系結構,以對模式進行實驗。
本文的組織結構如下:第 2 節回顧了智慧建築技術,建築物中的 IoT 佈署以及邊緣運算範例。第 3 節提出了一種在建築物(自動與否)中佈署邊緣和霧運算範例的方法。第 4 節介紹了進行的實驗。最後,第 5 節介紹了結論和未來的工作。
2. 相關工作
本節介紹與這項工作相關的主要研究領域。首先,我們在分析雲端運算層之後,回顧了基於邊緣運算範例的資源和服務供應。最後,我們研究了實現智慧建築的技術,並在最後的小節中,總結了先前研究的貢獻。
2.1. 邊緣運算資源和服務供應
最近,網路在兩端被標記為「邊緣」和「核心」,以查明處理發生的位置。邊緣端靠近數據源和使用者,核心端由雲端伺服器組成。透過這種方式,邊緣運算範例將運算推送到 IoT 網路的邊緣,以減少數據處理延遲,和發送到雲端的數據數量。基於雲端的後端,可以處理對時間不太敏感,或源設備本身不需要結果的處理請求(例如,物聯網網路狀態下的大數據分析)。
在邊緣運算資源供應方面,正在進行的 Horizon 2020 RECAP 項目,提出了一種整合的雲端 - 邊緣 - 霧端架構,目的在解決應用放置、基礎架構管理和容量供應。雲端/邊緣基礎架構監控功能豐富了應用,基礎架構和工作負載模型,這些模型又被回饋到優化系統中,該系統可以協調應用並持續配置基礎架構。
徐等人進行的研究。 提出了一種用於邊緣運算的實用感知資源分配方法,稱為 Zenith。借助 Zenith,服務提供商可以與邊緣基礎設施提供商,建立資源共享合同,從而允許延遲感知資源調配算法,以滿足其延遲需求的方式,來調度邊緣任務。
邊緣節點資源管理(簡稱 ENORM),是管理邊緣/霧節點資源的框架,可透過監控應用需求,來自動擴展邊緣節點。可以透過靜態優先等級分配,來確定特定應用的優先等級。供應和自動縮放機制,是基於線性搜索的相對簡單的實現。
當源本身是可行動的時,邊緣雲範例也是可行的。 Chen 等人研究了行動設備向邊緣節點(特別是在無線電接入網路邊緣)的智慧運算分流。在這項工作中,作者提供了任務卸載算法,將分佈式運算卸載決策表述,為多使用者運算卸載功能。在同一項工作中,Wang 等人研究了聯合協調卸載任務,到多個邊緣節點的問題,並提出在邊緣等級引入及准入控制,以及兩階段調度方法,與傳統的最近邊緣選擇方法相比,改進了卸載性能。
2.2. 雲端運算服務配置
就社會和行業採用資訊技術而言,雲端運算範例是最具創新性的策略之一。提供的優勢提高了效率,並降低了成本,同時提供了可透過 Internet,普遍存取訪問的按需 IT 資源和服務。
當前,雲端運算服務種類繁多,甚至如何提供,這是一個受到廣泛研究的主題,正在提出許多的方案。甚至有評論總結了雲端運算範例的相關研究。
本小節介紹了有關以下問題的先前工作,這些問題與本手稿的主題有關:(i)安全性; (ii)服務品質(QoS); (iii)提供邊緣服務。
(i)安全是雲端運算中一個具有挑戰性的問題。雲端服務位於應用環境之外,並且超出了防火牆的保護範圍,因此,需要附加的安全層。另外,邊緣和霧運算應用的行動性和異構性,使得難以定義單個過程。因此,需要一種分佈式安全策略。
此外,必須有一個標準化的環境,才能正確解決此問題,並指定霧運算和邊緣設備,如何相互協作。網路邊緣上的多個霧節點之間的敏感數據通信,需要資源受限的事物的輕量級解決方案。另一個與安全性相關的問題是數據位置。在雲端中運行數據分析是很常見的。因此,關於數據安全或隱私的公有雲與私有雲的爭論就出現了。
(ii)分配給雲端應用的資源,通常是根據合同規定的服務水準協議(SLA)所設置的。但是,實際上,由於偶爾執行大量事務,而導致分配的基礎結構飽和,可能會出現瓶頸。為了解決此問題,可以在資源可用時,動態擴展雲端基礎架構。當前,最具創新性的趨勢,目的在建構自動 SLA 合同合規系統。在 Faniyi 和 Bahsoon,以及 Singh 和 Chana 進行的研究中,可以找到與品質服務管理相關建議的詳盡綜述。考慮到這一點,提出了幾種策略來預測,應用的資源需求和 QoS 的要求。最近的工作試圖將安全性和 QoS 問題結合起來,以提供全面的性能指標。
(iii)最後,濫用雲端服務,是該領域的另一個問題。物聯網環境是霧和邊緣設備不斷加入或離開,動態的執行前後關聯。因此必須在網路邊緣提供彈性的服務。為此,在網路的可用設備之間,共享應用工作負載,可以為高階運算應用提供靈活性。提出了可靠的服務供應方法,來為系統提供更高的彈性,並提供靈活和優化的雲端服務。
在本主題中,將雲端框架和中間軟體技術,設置為與雲端層,以及具有不同介面操作系統,和體系結構的設備之間,進行通信的平台。
2.3. 物聯網在建築服務工程中
物聯網開發為在建築物上,開發數位服務提供了新資源。建築物中常見的物聯網應用,包括節能的過程環節、維護改進、雜務自動化和增強安全性。由於全球變暖,建築物的節能是一個重要的課題。
物聯網技術引入智慧建築,不僅可以減少本地溫室氣體排放,還可以將減少溫室效應擴大到更大的領域。目前,物聯網還被用於建築領域,以協助設施管理。物聯網使營運系統能夠提供更準確和更有用的資訊,從而改善營運,並為房客租戶提供最佳體驗。有基於物聯網的建議,這些建議顯示建築系統,如何與雲端進行通信,並分析所獲取的數據,以開發新的業務見解,從而能夠推動真正的增值和更高的績效。
實驗研究顯示,物聯網平台不僅可以改善,工業能源管理系統中實體的互連性,而且可以降低工業設施的能源成本。 FacilitiesNet 表示,建築物聯網(BIoT)正在推動我們獲取資訊,彼此互動和做出決策的方式發生重大轉變。BIoT 不僅與連接性或設備數量有關,而且還與交付實際和相關結果有關。當前,有很多基於物聯網的智慧家庭應用的例子。
然而,智慧設備或「物」,僅僅是連接到網路的設備或嵌入式系統。增值來自設計協調系統,和提供智慧服務,以提供實際收益的能力。這些特徵基本上,取決於對不同類型連接事物的異質性,及其互操作性的管理,並取決於數據處理提供的情報潛力。
Tolga 和 Esra 進行的研究得出的結論是,就智慧家庭系統中的軟體和硬體而言,物聯網技術尚未變得穩定。原因之一,有可能是物聯網技術仍處於發展階段。McEIhannon 所撰寫有關物聯網應用的邊緣雲和邊緣運算的未來,其評論得出了類似的結論。這篇評論提到概念和發展,目前還處於早期階段,從學術和行業的角度來看,許多挑戰都需要解決。
物聯網帶來了新的機會,但許多企業仍在尋求了解和分析,其將如何影響,並與現有的 IT 結構和管理策略整合。為此,必須創建專門的使用模式和技術,來彌合這一差距。
2.4. 發現
以下結論闡明了這項研究建議的新穎之處:
雲端運算作為「實用」的一般概念,非常適合智慧家庭應用的常規需求。但是,在某些情況下,將所有運算都移到雲端中,是不切實際的。
邊緣計算作為一種計算範例而出現,可以在物聯網設備生成的數據附近執行計算。這種範例可能有助於滿足最新應用的安全性和 QoS 的要求。
當前,控制子系統的高級建築設施,通常使用 Internet、IoT 協議和 Web 服務。專有系統是使用標準的 Internet 通信協議設計的,用於管制和監控。先前的工作顯示,基於無線感測器網路、Web 介面和工業控制模式,用於氣候控制、電源管理或安全性的控制系統,使用不同的監視和控制技術。監控應用分析,得自監控和數據採集系統中的這些子系統。對於不同的子系統,有不同的解決方案。考慮到上述情況,本工作中提出的模式,引入了以下新穎元素:
A. 介紹了一種分層架構(整合了邊緣和霧端等級),以及提供子系統之間互操作性,以及在建築物控制中開發智慧服務的方法,該方法使用了邊緣和霧端範例,這些範例將 IoT 協議整合在一起,並在本地 Intranet 中操作 AI 技術,讓雲端服務的通信層,完善了該層的架構。
B. 介紹了一種基於使用者為中心的方法,用於在互操作性需求下設計、驗證和改進新服務。
C. 該提案允許使用可以在已建的建築物中,實施的非專有硬體和軟體系統。
3. 計算模式設計
建築物中的設施子系統分為有照明、氣候、能源、安全、警報、電梯等。在自動化建築中,這些子系統由專門的控制技術控制和監控。在非自動化建築物中,不存在這些服務,並且子系統透過電子和電氣方式進行控制。在這兩種情況下,所有子系統都為建築營運,提供必要的服務。
從邏輯上講,每個子系統都在其場景中起作用,並且不能與其他子系統互操作。嵌入式電子控制器和連接的不同感測器,可以使每個子系統自動化。這些服務都是基於直接反應性控制規則。除了嵌入式控制系統和感測器之外,通信技術(基於 Internet 協議)和新的行動設備還為開發管制、監控和數據訪問服務,提供了新的可能性。
在智慧型動設備上開發,並連接到 Web 伺服器的人機介面和專用應用,是近年來已實現的服務的範例。每個子系統中的專家(氣候、安全性、電源等),都具有可以轉換為專家規則的知識。這些規則被轉換為用於管理、維護、控制、優化和其他活動的控制算法。這些規則是可以,在可程式設備上編程和實現的。但是,它們是靜態的,不會在出現新情況時發生變化,並且不能互操作,也無法適應每個安裝的特性。
例如,氣候或安全專家決定,如何使用標準啟動條件,來配置每個子系統。每個控制規則僅在一個子系統(此範例中為氣候或安全性)中工作,因此,這些子系統之間沒有互操作性。考慮到這種情況,提出的模式有助於並允許,基於不同子系統的互操作性,來整合新的數位服務,並將人工智慧(AI)技術的新服務,引入當前設施。
例如,諸如電梯控制的設施,可以用於安全服務或建築能源管理服務。氣候控制設施,可以與安全子系統整合在一起。整合到模式中的天氣預報軟體系統,可以由能源管理服務,或建築物空調服務使用。
目的是讓每個子系統中的專家,參與設計整合服務,並將所有子系統轉換為可互操作的系統。該模式會開發自動規則,並允許在考慮安裝行為本身的情況下進行決策。該模式基於一個過程,該過程包括四個開發階段(圖2)和分為不同級別的硬體 - 軟體體系結構(圖3)。該體系結構的主要等級,是邊緣等級和霧等級。這兩個層次介紹了在建築物中,應用物聯網技術的新穎性。下面介紹了模式的各個階段(分析、設計、實施和啟動)。
.分析:在此階段確定了不同的專家使用者(氣候、安全、電力、水、能源、管理人員,以及資訊和通信技術(ICT)技術人員)。諮詢專家使用者,以指定需要控制的主要過程。資訊通信技術專家作為整合環節,參與了這一過程。第一種方法產生了設計控制規則,和潛在服務所需的事物(對象)。在此階段,使用以使用者為中心的方法,並捕獲子系統的需求。
.設計:我們提出了一個三層架構(邊緣、霧端和雲端),如圖 3 所示。
.實施和數據分析:在此階段中已安裝和整合了子系統。服務基於每個子系統中的規則,分析事物(對象)生成的數據,以設計基於機器學習的服務。
.啟動:最初,在每個子系統的監督下制訂專家規則。然後,使用回饋過程安裝規則。最後,透過人工智慧技術,可以推斷出自動的和經過調整的規則。
3.1. 分析與設計
專家使用者對此過程,進行不同的審查。以使用者為中心的技術,用於設計整合流程。目的是獲得所需的所有事物(對象),它們之間的關係,以及潛在的服務。一旦指定了事物(對象)和服務,就必須關聯通信協議和控制技術。選擇了物聯網協議和嵌入式控制器;提出了人機介面;指定了邊緣層和霧層及其功能;分析專家規則和智慧服務。最後,提出了維護和操作方法。所有這些任務在專家技術人員,和資訊技術專家之間共享。
結果是事物的定義,它們之間的關係,以及與邊緣和霧層的交互作用。該過程中代表了建築物的所有子系統,數據感測器、執行器、控制器、規則和過程經過設計,可以整合所有子系統。數據集、對象和設備,由物聯網概念表示。事物由具有狀態和配置數據的實體,和前後關聯組成。事物數據位於霧和邊緣節點中,儲存的不同配置中的關聯性。
事物以數據向量表示:[ID、類型、節點、前後關聯情境]。
– ID是辨識碼。
– 類型可以是感測器、執行器、變量、過程、設備、介面、數據儲存,或可以在 IoT 生態系統中寫入、處理、通信、儲存或讀取數據的任何對象。
– 節點指定建築物子系統、功能描述、層類型(邊緣、霧端、通信或雲端)、IoT 協議和時程存取訪問。
– 前後關聯表示在 IoT 生態系統中,用於發布或讀取數據的時間、日期、位置,與其他事物的關係、狀態和訪問頻率。
表 1 是由事物([ID、類型、節點])。所有事物都可以訪問配置文件(CF),以了解如何使用可用數據,以及如何使用適當的訪問權限配置新數據。前後關聯數據位於內建記憶體,或是靜態儲存。使用定義的事物,設計不同的控制規則。這些控制規則是分佈在連接到網路的不同嵌入式系統中,控制過程的一部分。事物表示佈署在安裝的不同子系統中,所有的可用資源。在此等級上,設計師對所有事物進行分析、指定和關聯。基本控制算法是使用此資訊實現的。配置關聯性允許層和設備之間,所有事物的互操作性。
在此階段的另一級設計,必須提出物聯網管理中,使用的節點要求和規範。設計的流程和服務,將在邊緣或模糊節點中實施。必須指定每個節點,以確定其內部功能、通信及其服務。在獲取數據的地方,開發了智慧和處理能力。邊緣和霧層的節點,位於數據感測器、執行器和控制器附近。本文提出的方法,使用具有兩個功能的兩層(邊緣和霧端)。每一層都可以佈署互連節點的網路,以促進互操作性。
邊緣和霧層的功能是:
邊緣層功能:在連接感測器/執行器的嵌入式設備上,開發的控制軟體。某些 AI 算法可以安裝在邊緣節點上。中央處理器(CPU)和計算資源有限。安裝了通信介面,以允許在本地網路中進行整合。
霧層功能:局域網級別的通信、AI 範例、儲存、配置關聯性和監控活動。霧節點透過處理、通信和儲存,來處理 IoT 的Gateway、伺服器設備,或其他設備中的數據。在此等級實施本地、全球的整合服務。利用這些節點的硬體、軟體和通信功能,開發了基於機器學習範例的算法。霧層設備還可以在很少單位的設施或服務中,執行邊緣節點功能。
透過這兩個等級,可以優化建築設施,以獲得不同子系統之間的整合和互操作性。
表 1 顯示了每件事與關聯性配置,和節點規範的關係。節點標識其所屬的子系統(控制、能源、氣候等),層(霧端、邊緣、通信和雲端)及其執行的功能。
3.2. 架構設計
在分析和設計階段,獲得對象(事物)及其關係。規範和要求用於實現每個層。實施取決於提供所需功能的設計,和現有技術(硬體、通信和軟體)。在此階段,開發了一種適合現有設施的體系結構。物聯網協議提供互操作性,而 AI 範例則提供了適應性和優化性。邊緣運算節點用於控制設備,霧運算節點安裝在本地網路節點上。這些等級為配置、安裝和運行新流程,提供了強大的資源。
物聯網協議,傳達所有子系統數據。每個子系統由對象/事物(虛擬等級)組成,安裝為可連接的感測器/執行器/控制器設備(硬體等級)。
物聯網通信中,針對建築場景建立的要求是:標準協議、低功耗、易於存取訪問和維護、支援整合新模組,非專有硬體或軟體,以及低成本設備。
MQTT 協議,是目的在用於提供整合和互操作性資源,異構通信場景的主要物聯網協議之一。該協議被提議作為感測器、執行器、控制器、通信設備,和子系統之間的通信範例。
MQTT 協議的一些主要功能,在不同的著作中有所顯示,這使其特別適合於這項研究。他們之中有一些是:
.它是針對資源受限的場景開發的發布 - 訂閱消息協議。
.它具有低頻寬要求。
.這是一個非常節能的協議。
.編程資源非常簡單,使其特別適合於嵌入式設備。
.具有三個 QoS 等級,它提供了可靠和安全的通信。
MQTT 開發了無所不在的網路,該網路支持 n-m 節點通信模式。任何節點都可以查詢其他節點,並對其進行查詢。在這些情況下,任何節點都可以充當基地台的角色,能夠將其資訊傳輸到遠端處理位置。無處不在的感測器網路(USN)中的節點,可以處理本地數據。如果使用 Gateway,則它們具有全局可訪問性;他們可以提供擴展服務。
節點(邊緣或霧),可以具有本地和全局存取訪問權限。這些設施具有不同的可能性和益處。本地數據處理,對於基本過程控制是必需的,而全局處理則可用於模式檢測和資訊生成。從這個意義上講,擬議的平台使用了組合功能:連接到 IoT 雲端服務,本地網路區域上不同的 USN。在這種情況下,運算層(邊緣或模糊等級)將用作控制流程和雲端服務之間的介面。該層可以在與雲端進行通信之前,進行處理數據。
實現邊緣和霧端運算節點需要執行三個操作:
.連接和通信服務:所有設備必須在同一網路中,並且可以互操作。所有感測器和執行器都可用於開發服務。此活動的一個示例,是在 Internet 上遠端讀取建築物的電源參數、環境條件和開放的天氣預報數據。此活動中應實現其他功能,例如連接的安全性、可靠性和互操作性。
.嵌入式設備(邊緣運算層)中的控制算法和數據處理:在此活動中,這些設備中實現的基本控制規則和數據分析服務,可以開發新功能。此階段可以應用於數據過濾、運算氣候數據或分析功耗、直接反應控製,或使用模式辨識技術檢測事件。
.Gateway 節點(霧運算層)上的高階服務:此等級使用和管理 AI 範例,和 IoT 通信協議。霧運算節點對數據執行智慧分析,對其進行儲存,過濾並將其傳遞到不同等級,以糾正較低級別的新控制措施,或者生成雲端中服務感興趣的資訊。此階段的應用示例,包括分析新模式、預測用水量,或功耗、智慧檢測和其他預測服務。
3.3. 測試與回饋
在測試階段使用標準方法,邊緣和霧層提供不同的功能。提出了針對不同子系統的機器學習模式,並且可以將其安裝在邊緣或霧節點上。必須執行以下操作,來測試機器學習應用:
A. 定義和捕獲數據集:必須辨識、捕獲和儲存主要變量。在不同的建築子系統中,過程數據集是由連接到邊緣層的感測器捕獲的數據。使用通信協議監控和儲存數據集。一個案例是電表,該電表在配電盤中連接到嵌入式設備(邊緣節點),該嵌入式設備傳送電力數據,以在霧節點設備中儲存和處理。
B. 訓練數據集和形式辨識模式。先前數據集的一個子集,用於訓練不同的模式。評估針對從未用於訓練的數據測試模式,此過程的結果已由專家使用者驗證。目的是獲得一組代表性的結果,以了解模式在現實世界中的表現。
C. 實際場景中的驗證:必須在邊緣和霧節點上,實施新的服務和控制算法。這些模式具有用於分析數據,實施特定模式,並使用結果開發最佳參數的算法。在此階段,可以修改或進行改善模式。
D. 用統計術語和模式演變,得出測試結果:基於 AI 算法的模式而將產生近似值,而不是精確的結果。分析應用結果以確定置信度,並允許模式演化。該活動支持開發新的 AI 服務,或對已實現的算法進行修改。有監督的自動更改,是維護和改進系統的過程。此階段的過程,包括所有模式層。
建議對使用邊緣和霧,任何的安裝進行這些活動。如前所述,該模式既可以安裝在既有舊的建築物中,也可以安裝在新建築物中。對於新建築設計,基於建議模式的安裝更易於整合。此外,可以提供的服務的潛力,也使其對於既有建築物具有吸引力。
4.在建築子系統中,實施智慧服務
該模式在預先存在的住宅建築物上,進行了測試。設計和實施電源管理、管制和監控服務。物聯網協議(MQTT 和 HTTP)和 ML 範例,用於建議的層體系結構。基於 KNN 的機器學習方法,和樹決策算法用於管理功耗(家用電器),和可再生能源發電(風能和太陽能)。使用房屋中的霧節點,在雲端平台上實現監控和統計數據。該節點連接到控制可再生,和家用電器子系統的不同邊緣節點。
在圖 6 中,邊緣節點,整合在先前安裝的可再生子系統中。透過邊緣層上的這種新設備、電源管理、安全控制和操作流程得以整合,並且可以與其他子系統互操作。可以設計新的智慧服務。邊緣節點將數據傳輸到霧節點 Gateway,該 Gateway 管理功耗和發電,並控製家用電器。該節點中的輸入,是可再生能源發電的數據。輸出控件是 ON-OFF 開關,用於優化發電、安全性和操作。
4.1. 分析與設計
分析了住宅建築,以設計電源管理,安全和控制服務。 在第一種方法中,所需的主要事物(對象),它們之間的關係和不同的服務,如表 2 所示。
4.2. 執行
分析房屋中的建築子系統,以整合這個執行模式層:邊緣控制、霧服務,與雲端的通信和雲端服務。 選擇了本實驗工作中使用的感測器、執行器和控制過程(事物)。 表 3 列出了使用的嵌入式設備。
家庭服務中的控制過程,需要反應時間和互操作性。人機介面、數據存取訪問和分析服務,是本地和雲端運算上的服務。上面提到的兩個需求,都使用不同的協議處理:控制/通信上的 MQTT,和雲端服務上的 HTTP(RESTful API)是用於整合,並使所有子系統互操作的 IoT 協議。在提出的該層模式中,還使用 MQTT 協議、控制、數據處理,以及使用 RESTful 協議,到雲端的數據通信,來開發機器對機器(M2M)應用。
MQTT 使用開放的消息協議,該協議可以將遙測樣式的數據(即在遠端位置收集的測量結果),以消息的形式,從設備和感測器,沿著不可靠或受約束的網路傳輸,到伺服器(BROKER)。消息是簡單、緊湊的二進制數據包,有效載荷(壓縮的標頭,比超連結傳輸協議(HTTP)少得多的詳細資訊),並且非常適合推送簡單的消息傳遞方案,例如溫度更新或移動通知。例如,消息也可以很好地用於,將受約束的或更小的設備,和感測器連接到 Web 服務。
MQTT 通信協議,使所有對象可以互操作。透過此協議實現的發布者和訂閱者模式,可以互連所有設備和事物。該通信層由安裝在霧節點上的代理設備管理。不同的發布者和訂閱者,在不同的節點上實現。安裝了一個 Gateway 設備(霧節點)和兩個嵌入式控制器(邊緣節點),來控製家用電器和電源管理。事物和流程佈署在所有節點上。
邊緣節點控制子系統,霧節點根據決策樹,以及專家定義的規則,實現 AI 範例。霧設備將數據傳輸到雲端平台,以開發儀表板螢幕,來監看子系統的狀態。
可以開發新的雲端平台服務:事件檢測、機器學習處理、統計分析等。專家使用者設計基本的控制算法。在學習和訓練過程之後,將根據專家系統的結果,對這些算法進行調整和修改。在這項工作中,目標是在不損失生產力的情況下優化資源(控制和能源)。在邊緣或霧節點中,執行不同的控製過程;分類過程和決策樹在霧節點中實現。算法以 Python 語言實現。此語言的開源庫用於不同的應用。
4.3. 佈署與測試
對於現有建築物,邊緣節點交錯插入已安裝的控制器、配電板,以及感測器和執行器中。如果在分析階段指定了新的東西(電錶、氣候和控制器),則會安裝一些新的感測器/執行器。這項工作中佈署的邊緣節點具有以下優點:
.請勿干擾先前的安裝操作。
.他們使用新的專家規則和自動規則,引入新控件。
.他們測試和重新配置,在分析、學習和測試驗證中,設計更新的專家規則。
圖 7. 佈署在配電盤中的節點。 使用 IoT 協議通信,在不同節點中開發數據捕獲、控制算法、數據分析、儲存和通信服務
在電力管理過程中,專家使用者根據電力消耗、發電量、消耗負荷曲線、氣候數據和氣候預測數據,對具有選定流程的時間表,進行可程式處理。邊緣節點捕獲數據,並將其發送到霧節點。
霧節點處理室內和室外環境的日記數據,以及天氣狀況。霧節點還可以捕獲其他感測器數據。對房屋中的這些數據消耗和生成方式,進行檢測和分類。消費和發電結果,作為數據添加,以便與儲存的數據一起進行分析。可以使用機器學習方法開發,作為家用電器或人類活動檢測的智慧服務(圖8)。
4.3.1. 機器學習:數據捕獲過程(邊緣節點)和家用電器分類(霧節點)
連接在主配電盤中的電表,用於捕獲數據,並使用標準的 K 近似值,最近鄰(KNN)分類算法,來開發形式辨識模式。 KNN 是機器學習系統中最常見的方法之一。電表捕獲電流;如果連接了新的家用電器,則電流數據會更改。不同的家用電器具有不同的變化等級。
用於辨識家用電器的不同模式的主要變量,是連接時的電流水準差異。數據捕獲過程流程圖(圖9),顯示了在邊緣節點中實現的算法,以捕獲預處理並傳遞電力數據。
在此過程中,監督階段使用訓練數據集。接下來,真實場景中的驗證,將測試分類模式。家用分類設備將用於不同的服務:人類活動的辨識、負載控制、可再生能源管理、空調、安全性等。在訓練階段,已捕獲了不同的家用電器開機,以獲得一組形式。每個家庭都有一個矩心向量,將用於分類過程中的檢測。如上面所示的算法所示,分類器處理將產生連接時的電流數據作為輸入。KNN 分類過程流程圖(圖10)描述了 KNN 方法,它在霧節點中實現。
4.3.2. 可再生電源管理。控制電力自耗的決策樹
每個建築物都有不同的需求曲線,以及在接入電網方面的特定情況。為此,整合和可互操作的設施,可以實施適用於每種情況的不同解決方案,從而提供對太陽風資源的最佳管理,優化電源效率,簡化管理流程,並實現最高的成本節省。當可再生能源超過消耗的能源時,在使用 AC 耦合到電網的設施中,會出現問題。
在實驗工作中,太陽能在一天的中央時段的能量,大於所消耗的能量(圖11)。但是,在分析了消耗曲線之後,可以在這段時間內連接負載,以避免注入電網。可以透過設計一種算法,來滿足這一要求,該算法可以預測,何時發生此事件,以自動連接不同的負載。利用所有感測器和執行器的整合,和互操作通信,已經開發了在不同節點中,所實現的算法(圖12)。
13. 在電源管理子系統上開發的決策樹。 它由專業使用者設計,並整合在邊緣節點上。該決策樹的目的,在優化可再生能源的使用。
4.3.3. 基於 Edge 和 Fog 節點的 Control Home
圖 14 顯示了安裝在住宅房間中的邊緣節點。 該節點可以控制四個設備(設備),並捕獲感測器數據(功耗、發電量、溫度、濕度等)。該設備可以使用 MQTT 協議進行通信。該協議允許設備之間,進行其他類型的通信:智慧手機、新邊緣節點等。圖 7 和圖 14 顯示了可以在其他建築物中,佈署的標準實現。在所有系統中,都有配電板,這些配電盤佈署了霧節點和邊緣節點,如圖所示。
4.3.4. 使用物聯網協議的雲端服務
雲端服務可以監控,透過霧節點或人機介面(HMI)訪問的數據。 IoT 協議(MQTT)從任何已連接 Internet 的設備推送數據。事件檢測、儲存統計分析等其他服務,完善了該資源的功能。提供類似服務的不同平台,顯示了商用物聯網技術的狀態:Amazon IoT、Microsoft Azure、Ubidots 和 Thingspeak,是提供 IoT 平台的公司一些案例。提供了資源以及客戶端,和 IoT 平台之間的應用程式介面(API)通信,以便可以使用它們。
用於設計儀表板監控和管制的 HMI 資源,是這些平台上的主要實用功能之一。霧節點使用雲端 API 傳達數據和資訊,可以實施其他控制服務。在這些雲端平台上,預先建構了用於監控數據的儀表板設計。使用 API 實用功能,霧節點中的過程處理,會將數據發送到每個儀表板。API 文件指定了在設備、IoT 平台和 Mobile-Alerts Cloud 之間,交換數據的結構,以及用於加速項目的代碼案例和形成資料庫。
圖 15 顯示了在 Ubidots 雲平台上,設計的儀表板。Ubidots是本實驗工作中使用的物聯網平台。該模式可以在實現這些協議的層,和平台中使用不同的標準協議。圖 16 顯示了在雲端平台中,IF 變量 THEN 動作的事件配置。大多數物聯網平台,都提供此功能。
5. 結論
為了設計物聯網系統,越來越多地提出邊緣霧模式。但是,每個範例都提供特定應用領域的解決方案。不同子系統之間的整合和互操作性,可以改善這種情況,並提供更好的服務。這項工作的主要目的,是透過提出一種基於邊緣層和霧層,兩層體系結構的運算模式,來解決這個問題。透過這兩層,可以基於使用邊緣或霧節點中,嵌入式的設備捕獲數據所產生的新型有用資訊,來設計和開發新服務。這些節點使用雲端平台和 IoT 協議(例如 MQTT)。
MQTT 是作為不同層(霧 – 邊緣 – 雲)之間提出的通信協議,並進行實驗的。雲端平台用於開發儀表板的面板資訊和 Internet 上的新服務,例如控制、儲存和通信事件。該平台可用於透過 API,交付不同的服務。
該模式可以在現有建築物和新建築物中,開發這些服務。在這種情況下,要求每個子系統中的專家和專業人員,參與新服務的設計。
為了測試該模式的功能,並顯示如何在實際設施中,實現該模式,在住宅中進行了一項實驗性工作。在此霧和邊緣節點前後關聯中,描述了實現的幾個範例。開發了模式辨識和決策樹方法,以展示人工智慧在設計 IoT 解決方案中的潛力。已安裝服務的結果顯示,邊緣和霧節點佈署,產生了預期中整合和互操作性的好處。
提出的工作演示了,如何將邊緣和霧範例,整合到可以增強其優勢的新架構中,從而擴展了應用領域。該體系結構的主要科學貢獻,是整合、技術的互操作性,及其為開發 AI 服務提供的設施的範例。所有這些改進,都在已開發的實驗的不同示例中顯示。具體的優化和改進,將在以後的工作中進行。此外,使用機器學習平台,和 AI 範例的新控制規則,將確保可以創建和改進新的智慧服務。
附圖:圖1.自動建構子系統和資訊技術環境。
圖2.基於使用者為中心關係的模式。
圖3.通信架構。 每個等級都有不同的功能。 提出了兩個通信等級:IoT(使用消息隊列遙測傳輸(MQTT))和 Web(使用代表性狀態傳輸(REST)協議)。這些協議的層,涵蓋了已建立的整合和互操作性要求。
圖4. 在建築物的現有設施上實施的邊緣霧架構示例:邊緣節點是較低的層次,必須與安裝的設備進行新連接。互連所有子系統的霧節點,是透過整合連接到邊緣節點的新設備來實現的。邊緣和霧節點,可以佈署在所有建築物子系統中。
圖5. 住宅建築中的第一個實驗工作。
圖6. 整合在先前安裝的可再生子系統中,邊緣節點的示例。 該節點可以使用新算法控制 ON-OFF 開關,以管理發電過程,以及通信和監控電源數據。
表1.事物示例描述。寫入 ID、類型和節點數據,以配置 XML 文件。配置關聯性儲存在霧節點中。
表 2. 實驗工作中的分析和設計要求。
表 3. 實驗室內使用的嵌入式設備。
圖 7 顯示了分佈在配電板上的節點(邊緣和霧狀)。在此節點中,設計並安裝了功率計、ON-OFF 開關控件和 AI 服務。
圖 8. 佈署的智慧電源功能。在霧節點中實施的分類過程,可用於檢測電連接和人類活動。可以使用 IoT 通信實現其他服務
圖9. 邊緣節點中捕獲,並預處理的用電量數據;MQTT 協議用於通信數據。另外,其他節點可以使用捕獲的數據,來提供其他智慧服務,佈署了整合和互操作性。
圖10. 分類過程。處理捕獲的電數據以檢測家用電器連接。可以使用 IoT 協議整合,來設計其他智慧服務。
圖11. 該圖顯示了實驗工作中的消耗和生產數據。 在自儲存的電力自備設施中,沒有儲存並且沒有注入電網,所產生的能量必須即時使用,並且不得超過所消耗的能量。 能源經理必須預測此事件,並提前連接電荷。
圖 12. 用電自耗設施中的可再生電源管理。
圖 13 是在電源管理子系統中,開發的算法的示例。 可以在邊緣節點上安裝此過程。該節點獲取氣候數據預測,並預測系統是否可以在不儲存的情況下,使用可再生能源。
圖14. 佈署的邊緣節點。該節點可以使用新算法,控制 ON-OFF 開關,並可以在每個房間或建築物中,通信和監控感測器數據。
圖 15. 在雲平台上配置的儀表板。顯示了風力發電數據和預測風力。
圖 16. 在雲端平台上配置事件的儀表板:IF 事件 THEN 動作。 該服務顯示了,如何使用雲端訪問來控制設施。與霧節點的 Internet 通信,可以控制建築物中的不同子系統,並使用電子郵件,SMS 或其他 Internet 服務來通報事件。
資料來源:https://3smarket-info.blogspot.com/2021/02/iot-edge.html?m=1&fbclid=IwAR0uijX5WdNrfzmGjVsakFGaEsWivPgyH1zumxVr7fwvvgqtdFFTI6jJXS8
cpu溫度顯示 在 Jonstyle Youtube 的精選貼文
《消防指揮官》將讓玩家率領一群消防員來面對大火,玩家要面對各種環境與危險,想辦法撲滅大火、搶救受困民眾與設備,甚至面對有毒物質等。玩家可以想辦法運用不同的載具、專業知識與工具,將其組合運用,以面對突發性的各種狀況,但別忘了考慮像是濃煙、不同材質的燃燒溫度與回燃等問題。
🔥追蹤我們
facebook 👉https://www.facebook.com/ejonstyle/
instagram 👉https://www.instagram.com/jonstyle69/
bilibili 👉https://space.bilibili.com/179029942
🔥更多影片
✦ GTA 5 歡樂時光: https://goo.gl/V0aFUl
✦ 神奇寶貝 TRETTA: https://goo.gl/8iwPaB
✦ 殭屍模組 https://goo.gl/gef2km
✦ 傳說對決 https://goo.gl/fBZyjc
✦ VLOG https://goo.gl/uTb9nb
•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•
電 腦 配 備
CPU: Intel i9-9900K
主機板: 技嘉Z390M GAMING
記憶體: 16G DDR4-2666
硬碟: 512G SSD + 2TB
顯示卡: 技嘉RTX2080Ti
•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•
分享請使用本影片
1. 禁止轉載營利之使用
2. 禁止放置自身頻道之使用
#消防指揮官 #火神的眼淚 #FireCommander
•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•⭐•
🚧 歡迎各類廠商來洽談合作
📩 jonstyle69@gmail.com
cpu溫度顯示 在 TuTou Youtube 的最讚貼文
我們來看看零成本挖礦挖比特幣、以太幣,一個月能有多少收入,能不能突破一般上班族月薪呢?影片前面聲音偏小請見諒我忘記調了,中後段就正常音量。
喜歡還不快訂閱 ➔ http://2tou.cc/SubTuTou
成為頻道會員 ➔ http://2tou.cc/JoinMember
---------------------------------------
挖礦日記系列影片 ➔ http://2tou.cc/MiningPlaylist
任何挖礦問題請至
海外用戶請用這個 ➔ http://2tou.cc/TuTouDiscord
兔頭Line顯示卡挖礦社群 ➔ http://2tou.cc/TuTouLineGroup
兔頭Line手機挖礦社群 ➔ http://2tou.cc/TuTouPhoneMining
兔頭官方Line ➔ http://2tou.cc/TuTouLine
兔頭代組礦機 ➔ https://2tou.cc/TuTouShop
挖礦成信仰,下部影片教大家如何挖礦 顆顆
全民都能當礦工賺錢,賺取額外被動收入
↓手機挖礦(真的能提領比特幣)
http://2tou.cc/3dsrdc
專業挖礦作業系統
↓Hive OS (輸入優惠碼TuTouHiveOS免費得10美元)
http://2tou.cc/3c9yqa
↓Flint OS (輸入優惠碼TuTouFlintOS免費得100人民幣)
http://2tou.cc/3d3rbv
交易所
MaiCoin Max: http://2tou.cc/MaiCoinMax
幣安: http://2tou.cc/Binan
幣托: http://2tou.cc/BitoEX
MaiCoin: http://2tou.cc/MaiCoin
0:00 開頭
0:40 過去的挖礦經歷
0:53 灌輸觀念
2:02 組礦機前正在挖礦的顯卡
2:40 開始組挖礦機
6:24 開始挖礦
7:18 降電壓降溫度分享
8:42 第一次挖礦收益
9:17 手機監看挖礦和第二次挖礦收益
10:00 片尾廢話
12:33 額外精華
挖礦設備推薦清單
兔頭蝦皮 ➔ https://shopee.tw/tim885885
挖礦主板含CPU ➔ https://shp.ee/je5cevp
微星挖礦主板 ➔ https://shp.ee/uu7k8w7
PCI-E x1 延長線 ➔ https://shp.ee/dhk3sbn
PCI-E x1 擴充 1拖4 ➔ https://shp.ee/9eemw7b
PCI-E 7孔 擴充板 ➔ https://shp.ee/b3jjdct
鋁製礦機架 ➔ https://shp.ee/uf6rnjt
鋁製礦機架2 ➔ https://shp.ee/fx2cqet
開機用跳線 ➔ https://shp.ee/nemcp6t
電源同步啟動線 ➔ https://shp.ee/9q3zwqu
1200w只能接顯卡Power ➔ https://shp.ee/5uajb2s
顯卡部分請自行至以下購物網站找尋
蝦皮 ➔ https://shp.ee/qxvr4kw
找顯卡餓了?去超市買個東西吃吧 ➔ https://shp.ee/akigfpe
掃貨專用
全台比價網 ➔ https://biggo.com.tw
礦機資訊
主板: H81 Pro BTC
RAM: 4G DDR3
顯卡:
AsRock AMD RX 580
AsRock AMD RX 590
AsRock AMD 5500XT X4
ASUS Nvidia GTX 1080
EVGA Nvidia GTX 1050
MSI AMD RX 470
MSI Nvidia GTX 1070
Power: 忘記牌 700w,戴爾 870w改裝款
挖礦軟體: NiceHash
#挖礦日記 #Mining #BitCoin #挖礦
---------------------------------------
IG: http://2tou.cc/TuTouIG
Tiktok: http://2tou.cc/TuTouTikTok
Facebook: http://2tou.cc/TuTouFB
Blog: http://2tou.cc/TuTouWeb
cpu溫度顯示 在 Huan Youtube 的最佳貼文
此次影片內所使用到的配備清單:
CPU: AMD Ryzen 3 4200G
MB: ASUS PRIME B550M-A
RAM: DDR4 8GB 2666*2
GPU: ASUS ROG GTX 1650 Super
SSD: Western Digital Blue SN550 NVMe SSD 1TB
HDD: Western Digital Blue 2TB PC HDD
PSU: CM MWE BRONZE 550W
SN550連結參考:
https://user85303.pse.is/39px8h
蟲洞底家:
00:00 開頭
01:16 剪輯電腦的配備需求
03:13 零件介紹: CPU
05:01 零件介紹: 主機板
07:31 零件介紹: 顯示卡
09:03 零件介紹: 記憶體
09:34 零件介紹: SSD&HDD
12:29 零件介紹: 機殼&電源
13:43 組裝心得
14:58 溫度功耗&穩定性測試
15:15 跑分測試
15:36 剪輯測試: 1080P
16:18 剪輯測試: 4K
17:09 代理剪輯解說&測試
19:08 調色
19:28 調色測試: 1080P
19:54 調色測試: 4K
21:15 總結
#ASUS #WesternDigital
cpu溫度顯示 在 cpu溫度怎麼看2023-在Facebook/IG/Youtube上的焦點新聞和 ... 的美食出口停車場
cpu溫度 怎麼看2023-在Facebook/IG/Youtube上的焦點新聞和熱門話題資訊,找cpu溫度怎麼看win10,桌面顯示cpu溫度,cpu溫度內建在2022年該注意什麼?cpu溫度怎麼看在2023的 ... ... <看更多>
cpu溫度顯示 在 cpu溫度怎麼看2023-在Facebook/IG/Youtube上的焦點新聞和 ... 的美食出口停車場
cpu溫度 怎麼看2023-在Facebook/IG/Youtube上的焦點新聞和熱門話題資訊,找cpu溫度怎麼看win10,桌面顯示cpu溫度,cpu溫度內建在2022年該注意什麼?cpu溫度怎麼看在2023的 ... ... <看更多>
cpu溫度顯示 在 如何顯示顯卡溫度 - Mobile01 的美食出口停車場
事實上,Windows 10(和更早版本)沒有開箱即用的溫度監控支持。我們不得不使用第三方應用來監控CPU和GPU溫度。幸運的是,從Windows 10 build 18963開始, ... ... <看更多>