ref: https://ably.com/blog/no-we-dont-use-kubernetes
八月第一篇,就來個有趣的文章,來看看 ably 這間 SaaS 公司為什麼沒有使用 Kubernetes,不但當前沒有使用,甚至短期未來內都不會想要使用
更是直接的說如果你有興趣來加入團隊,千萬不要把將 Kubernetes 導入到團隊中是一個可能發生的事情。
我個人覺得這篇文章滿好的,因為是認真的去比較導入 Kubernetes 帶來的改變,而這些改變對團隊來說到底是可接受還是不可接受
而不是所謂的人云亦云,人家要我也要,人家不要我也不要...
文章分成兩部分,前述介紹當前 Ably 的環境架構是什麼,而半部分則是很技術的去探討如果導入 Kubernetes 帶來的好處與壞處是什麼
最終權衡比較之下,會發現導入 Kubernetes 沒有帶來實質上的好處。
文章開頭先簡述了一下 Kubernetes 這幾年的風潮,從最初 Google Borg 的開發開始談起,作者特別提到當初 Borg 的用法可是將一堆實體機器給搭建出一個 Private Cloud 的叢集給團隊使用,
而目前 Kubernetes 更多的用法則是搭建於 Public Cloud 上面的虛擬機器中,透過將 Kubernetes 部署到這些不同的 Cloud Provider 似乎帶來了介面統一的結果,對於 DevOps 人員來說
不同 Cloud Provider 如今看起來都是 Kubernetes 的樣貌。
Ably 目前到底怎麼部署應用程式
Ably 主要使用 AWS 作為其 Cloud Provider,並且於 EC2 機器上使用 docker/container 來部署團隊中的應用程式。
作者團隊中沒有使用任何已知的 Orchestration 服務來管理多節點上的 docker/container,取而代之的則是每個 VM 開機後則會根據 autoscaling group 的機制來判斷
每個機器應該要部署哪種 container/docker。
對於 Ably 來說,團隊中沒有任何 scheduler 相關的服務來調度各種服務,這意味每個 VM 就代表一種服務,所以將 VM 上的服務從 Core 轉換成 frontend 這種行為不會發生。
今天需要針對需求轉換服務時就以 VM 為基準來整批換掉即可。
每個節點上面都會有一個輕量的監控服務,用來確保運作的 Container 如果掛掉後可以被重啟,甚至如果當前運行的版本不符合需求時也能夠將該服務給停止。
流量方面,因為每個 Autoscaling Group 就代表一個服務,所以直接使用 NLB 與 Target Group 來將流量導入該 Autoscaling Group 即可。
至於容器與容器之間的內部流量(譬如 k8s service 等)作者認為也不是太大問題,畢竟每個機器本身都會被 VPC 賦予一個 IP 地址,所以使用上沒有什麼太大的問題。
接下來作者從幾個層次去探討當前設計與使用 Kubernetes 帶來的改變,分別有 (原文很多,這邊摘要不然文章會太長)
題外話,由於 Ably 的 Infra Team 數量有限,所以要考慮 K8s 只會考慮 K8s Service,如 EKS。
1. Resource Management
Ably:
a. 根據服務的需求來決定每個服務要用到的 VM 等級
b. 不需要去煩惱如何處理將多個小服務給部署到一個適合的大 VM 中
c. 作者稱這種行為其實就是 AWS 官方強調的 Right Sizing, 譬如只能跑兩個 Thread 的服務不需要 16vCPUs, 久久寫一次硬碟的服務也不需要一個 90,000 IOPS 的 SSD
d. 選擇一個正確的元件來搭建一個符合服務的 VM 讓團隊可以控制成本同時也減少額外的管理負擔
K8s:
a. 必須要使用一個比較強大等級的 EC2 VM,畢竟上面要透過 Container 部署很多服務
b. 針對那些需要小資源的服務來說,透過這種方式能夠盡可能的榨乾機器的資源,整體效能使用率會更好
c. 但是針對資源量沒有很辦法明確定義的服務則是會盡可能地去吃掉系統上的資源,這種被稱為 nosy neighbors 的常見問題已經不是首次出現了, Cloud Provider 本身就需要針對 VM 這類型的服務去思考如何處理資源使用,而 Cloud Provider 都有十年以上的經驗再處理這一塊
而所有 Kubernetes 的使用者則必須要自己去處理這些。
d. 一個可能的作法則是一個 VM 部署一個服務,不過這個做法跟團隊目前的作法已經完全一致,所以就資源管理這一塊,團隊看不到使用 Kubernetes 的優勢。
2. Autoscaling
Ably:
a. EC2 VM 本身可以藉由 Autoscaling Group 來動態調整需求
b. 有時候也是會手動的去調整 EC2 的數量,基本上手動跟自動是互相輔佐的
c. 團隊提供的是 SaaS 服務,所以其收費是針對客戶實際上用多少服務來收,如果開了過多 EC2 VM,則很多不要的花費與開銷都是團隊要自行吸收
d. 團隊需要一個盡可能有效率的方式能夠即使遇到流量暴衝時也能夠保證良好的服務的機制
K8s:
a. 可以透過不少方式來動態調整 Container 的數量,
b. 甚至可以透過 Cluster autoscaler 來針對節點進行調整,根據需求關閉節點或是產生更多節點
c. 動態關閉節點的有個問題是關閉節點時通常會選擇盡可能閒置的節點,但是閒置並不代表沒有任何服務部署再
上面,因此該節點上的 Container 都要先被轉移到其餘節點接者該目標節點才可以被正式關閉。這部分的邏輯作者認為相對複雜
d. 整體來說,k8s 有兩個動態調整的部分,動態節點與動態服務,而現有的架構只有一個動態節點。所以使用 k8s 則會讓問題變得更多更複雜。
3. Traffic Ingress
Ably:
a. Traffic Ingress 基本上每個 cloud provider 都提供了很好的解決方案,基本上團隊只要能夠維持每個服務與背後的機器的關係圖,網路流量基本上都沒有什麼需要團隊管理的。
b. 使用者會透過直接存取 NLB 或是透過 CloudFront 的方式來存取團隊內的服務
K8s:
a. EKS 本身可以透過 AWS VPC CNI 使得每個 Container 都獲得 VPC 內的 IP,這些 IP 都可以讓 VPC 內的其他服務直接存取
b. 透過 AWS LB Controller,這些 Container 可以跟 AWS LB 直接整合,讓封包到達 LoadBalancer 後直接轉發到對應的 Container
c. 整體架構並不會比團隊目前架構複雜
d. 唯一缺點大概就是這個解決方案是完全 AWS 綁定,所以想要透過 k8s 來打造一個跨 Cloud Provider 的統一介面可能就會遇到不好轉移的問題。
4. DevOps
Ably:
a. 開發團隊可以透過簡單的設定檔案來調整部署軟體的版本,後續相關機制就會將 VM 給替換掉,然後網路流量也會自然的導向新版服務
K8s:
a. 開發團隊改使用 Kubernetes 的格式來達到一樣的效果,雖然背後運作的方式不同但是最終都可以對開發團隊帶來一樣的效果。
上次四個分析基本上就是,使用 k8s 沒有帶來任何突破性的好處,但是 k8s 本身還有其他的功能,所以接下來作者想看看 k8s 是否能夠從其他方面帶來好處
Multi-Cloud Readiness
作者引用兩篇文章的內容作為開頭,「除非經過評估,否則任何團隊都應該要有一個跨 Cloud-Provider 的策略」
作者表明自己團隊的產品就是那個經過評估後斷言不需要跨 Cloud Provider 策略的團隊,同時目前沒有往這個方向去追求的打算。
同時作者也不認為 K8s 是一個能夠有效達成這個任務的工具。舉例來說,光 Storage 每家的做法都不同,而 K8s 沒有辦法完全將這些差異性給抽象畫,這意味者開發者終究還是要針對這些細節去處理。
Hybrid Cloud Readiness
管理混合雲(Public Cloud + Private Cloud based on Bare-Metal servers)是作者認為一個很合理使用 K8s 的理由,畢竟這種用法就跟當初 Google Borg 用法一致,是經過驗證可行的。
所以 Ably 如果有計畫要維護自己的資料中心時,底層就會考慮使用 Kubernetes 來管理服務。畢竟這時候沒有任何 Cloud Provider 提供任何好像的功能。
不過 Ably 目前沒有任何計畫,所以這個優點也沒有辦法幫助到團隊
Infrastructure as Code
團隊已經大量使用 Terraform, CloudFormation 來達成 IaC,所以透過 k8s YAML 來維護各種架構不是一個必要且真的好用的方式。
Access to a large and active community
另外一個很多人鼓吹 K8S 的好處就是有龐大的使用者社群,社群內有各種問題分享與探討。
作者認為
a. AWS 的使用者社群數量是高於 Kubernetes
b. 很多情況下,一個迭代太快速的產品其實也不一定對團隊有太大的幫助。
c. 很多人都使用 k8s,但是真正理解 k8s 的人微乎其微,所以想要透過社群來幫忙解決問題其實比你想像的還要難,畢竟裡面的問題太雜,很多時候根本很難找到一個真正有效的答案。
Added Costs of Kubernetes
為了轉移到 K8s, 團隊需要一個全新的 team 來維護 k8s 叢集以及使用到的所有基本服務。舉例來說,EKS, VPN CNI, AWS LB 帶來的網路好處並不是啟動 EKS 就會有的,
還必須要安裝相關的 Controller 並且進行設定,這些都是額外的維運成本。
如果找其他的服務供應商來管理 Kubernetes,這意味公司就要花費更多的$$來處理,所以對團隊來說,金錢與工作量都會提高,不同的解決方式只是這兩個指標的比例不同而已。
結論:
1. Ably 覺得 Kubernetes 做得很好,但是團隊目前沒有任何計畫去使用它,至少目前這階段沒有看到任何實質好處
2. 仔細評估後會發現,導入 k8s 其實也會帶出不少管理上的問題,反而並沒有減輕本來的負擔
同時也有1部Youtube影片,追蹤數超過3,380的網紅OP凱文,也在其Youtube影片中提到,0:00 今天我們要來介紹如何用選擇權的價差策略 來達到長期穩定獲利的方法 1:28 為什麼要做價差 a.已知最大風險,不會因為黑天鵝而被抬出場 期貨有可能會因為跳空,而出現無法預期的虧損 甚至不用談到跳空,有的時候你可能只是去忙一下 回來一看卻發現,怎麼豬羊變色了 但是垂直價差策略在你一開始建...
c to b舉例 在 矽谷牛的耕田筆記 Facebook 的精選貼文
ref: https://medium.com/swlh/quick-fix-sharing-persistent-disks-on-multiple-nodes-in-kubernetes-ef5541fd8376
這篇文章是 kubernetes 與 Storage 整合的經驗分享文,該文章包括了下列內容
Cloud Storage, NFS, Kubernetes, PV/PVC.
Kubernetes 內針對這些儲存相關的使用方式有
1. 使用 ephemeral 的儲存設備
ephemeral 只適合暫存資料使用,因為該儲存設備不是持久保存的,這意味 Container 如果重啟,資料就會消失。
2. 使用 Bind Mount 的方式將資料從節點掛載到容器中
就如同過往使用 Docker 時會使用 -v 的方式將同節點中的儲存目錄給掛載到容器中來使用。
基本上有任何永久性儲存的需求都會採用(2) 這個方式來處理,而目前很多 Cloud Provider 都有提供相關的儲存裝置讓你的 VM(k8s Node)
可以輕鬆存取與使用。
舉例來說,AWS 有 EBS, GCP 有 GPD,這類型的 Block Storage Device 本身支援動態掛載與卸載,所以就算 Kubernetes 將目標 Container 重新部署到
不同節點上也不需要擔心資料會不同,因為這些 Storage 可以隨者不同節點動態掛載上去,讓你的 Container 看到相同的資料。
但是以上兩個裝置都有一個限制,就是並不支援同時多人寫入的動作,於 Kubernetes 只能使用 Read/Write 模式。
這意味每個 Storage 同時只能有一個 Container 去進行讀寫操作(but Azure 的服務就沒有這個限制)
作者假設今天有一個服務底層是由三個元件組成,這些元件會需要針對相同一個資料集一起處理。
舉例來說有服務 A,B,C
A: 將資料寫入到儲存系統中
B: 從儲存系統中讀入資料進行二次處理,處理完畢再寫回去儲存系統中
C: 將資料從儲存系統中讀出並且供外部使用
上述情境簡單說就是一個儲存設備,會有三個服務同時想要讀取,一個專心寫,一個同時讀寫,一個專心讀。
這種需求就沒有辦法單純使用 EBS/GPD等裝置來使用,因此作者接下來就會針對如何使用 NFS 這套網路儲存系統來搭建一個符合上述需求的用法。
該解決方案流程如下
1) 透過 EBS/GPD 的方式掛載一個儲存空間到 k8s 節點中
2) 部署一個 NFS Server 的容器到 Kubernetes 中,該 NFS Server 會使用 EBS/GPD 作為其儲存空間的來源
3) NFS Server 透過 service 分享服務
4) 部署 PV/PVC 物件到 Kubernetes 中
5) A,B,C 三種容器透過 PVC 的方式來存取 NFS Server
因為 NFS 本身就是一個可多重讀寫的解決方案,作者透過這種方式讓多個應用程式可以同時讀寫,同時將這些資料保存到 EBS/GPD 的儲存空間中。
不過這種用法帶來的問題可能就是速度問題,從同節點直接存取變成透過網路存取,所以如果本身對於存取有非常高的頻寬需求時,使用這種解決方案也許會遇到
很難解決的瓶頸,畢竟大部分人的 k8s 叢集都是 data/control 兩種資料交雜於底層的網路架構中,沒有辦法將 data plane/control plane 給分開來。
有興趣看作者如何一步一步搞定上述流程的可以參考全文
c to b舉例 在 元毓 Facebook 的精選貼文
【後疫情時代中國面對的經濟環境】
本文嘗試用一個廣角、簡略但直入重點的方式分析中國在疫情之後所面對的全球經濟環境。
國家競爭力的經濟學概念與中國縣競爭制度
根據經濟學比較優勢定理,國家之間的競爭始終被比較成本所局限。而在分析國家競爭力上,我摒棄華而不實的哈佛商學院Michael Poter的鑽石競爭理論,回歸最基本但正確的經濟學成本概念,其中尤受諾貝爾經濟學獎得主R. Coase的「The Problem of Social Costs」鴻文啓發:
國家競爭成本 = 直接生產成本 + 間接生產成本 + 制度費用
特別說明我所謂的「間接生產成本」更接近上頭成本,本身除了牽涉到整體租值外也會涉及到產業乃至於社會國家的路徑依賴。
在相同供應層面,某國是否可以用更低成本下滿足同樣的需求,以及是否可以善用比較優勢定理。後者包含了前者的同時,也是國家與國家之間的角色不單純只是競爭關係,而是有更多供需關係。後者之所以尤為重要在於「買方與賣方永遠不存在競爭關係」。因此在供應鏈上彼此依賴的買賣雙方國家,依賴程度越深入越廣泛,則敵對的成本將等比級數增加。
換個角度來說,Covid-19疫情本身帶來上述三種成本的同步增加。這也意味著在疫苗逐漸普及的後疫情時代,能夠以更快速地降低上述三種成本的國家將在新一輪全球經濟重新平衡的過程中取得更佳的競爭優勢地位。
在張五常「The Economic Structure of China」一書闡述的中國曾有的1990年代末到2010年間之縣競爭制度下,中國借此享受人類近代少有的超低制度費用與間接生產成本,佐以原本享有的人口紅利帶來的在中低階工廠流水線上較低直接生產成本,中國製造橫掃全世界九成以上的中低階工業領域。
但隨著中國中央政府出台勞動法與加強反托拉斯管制與大大小小的管制措施,上述獨有的縣競爭制度似乎已不復存在。這也為疫情後面對全世界新的經濟環境中國是否還具有經濟學謂「低制度費用」的高彈性與快速適應力埋下變數。
瞭解這個重要局限條件改變後,我們來看看疫情後中國所面對的全球經濟挑戰有哪些。
1 全球通貨膨脹可能帶給中國輸入性通膨
美國建國以來90%以上的M0貨幣發行量是在最近15年內產生,尤其疫情後Fed諸多舉措都可說是「瘋狂印鈔」,在世界多數原物料與貿易均以美元定價與結算的前提下,世界性通貨膨脹必然來到。
站在2021年5月這個時間點看,美國股市、房市、債市與全世界的大宗期貨、能源價格都受到局部性通膨影響,尤其主要農產品、金屬期貨價格多在52周以來新高。(見圖)
(美國M0通貨)
(美國股市)
(美國房市)
(美國債市)
(石油價格)
中國改革開放以來相當長一段時間貨幣匯率政策緊盯美元。2010年代以後雖然改盯一籃子貨幣,但明眼人都看得出美元的比重。故,在美元瘋狂印鈔的環境下,人民幣相應的輸入性通膨也必然發生。
這一塊我們可以預測,在貨幣學 Impossible trinity law的局限,以及中國對人民幣國際化的追求下,中國人民銀行應將在近年內逐步脫鈎對美元匯率的政策,同時部分放寬外匯管制,以得到更多貨幣主權。
同時取消或降低部分關稅,以及放寬戶口管制,都可以是中國政府提高國家競爭力可能採取的措施。
二、 全球局部地區將因疫情影響出現糧食危機
很明顯Covid-19疫情影響了糧食生產與輸布,全球局部地區的糧食危機已經開始出現。根據聯合國2020年糧食安全報告估計到2020年底全球因疫情而陷入經濟衰退與飢餓的人口數達8300萬~1.32億人。其引發的糧食價格增長將加重中國輸入性通膨下,百姓生活的負擔
中國家戶支出30%花費在食物品項,又中國國內大豆需求90%依賴進口滿足,因此可預見中國的飼料與肉品市場價格恐將上揚且吃緊。
(中國主要糧食供需狀況)
全球能源市場也會因疫情與之前負油價事件影響一段時間內失去部分供給彈性,意味著能源市場價格伴隨通膨因素影響的上揚也是可以預期,這一塊同樣也會加重中國未來將面對的輸入性通膨壓力。
因此我們會看到中國在人民幣國際化推廣上會施以更大力道,例如與更多國家簽訂貨幣清算與貨幣交換協議,嘗試在糧食/能源品項上更多地採人民幣定價結算。如此方可在不過度犧牲中國世界供應煉地位的前提下,減少輸入性通膨對人民的衝擊,尤其是輸入性通膨下中國國內資本投資的資源錯置現象將可以得到一定程度約束。當然這部分中國政府應該還會採取價格管制或其他市場管制措施相佐之,但政府干預與介入本身又會帶來更多訊息費用、交易費用,甚至政府本身就成為資源錯置的問題根本,也是極為可能。這些都是身為投資人的我們值得持續觀察與因應。
三、 中美衝突與戰爭風險提高
如前述,國家邊際競爭成本,尤其邊際間接生產成本與邊際制度費用,增加速率大過他國之速率,則一國之國力衰退,或更精准地說,國家相對競爭優勢衰退。反之則可視為國家相對競爭優勢增加。
在人民幣國際化過程將直接與美元產生競爭關係且削弱美國對全球徵收「美元稅」的能力,經濟邏輯上的效果是:2008年金融危機後的QE之所以沒有在美國發生嚴重通膨,正是因為美元在國際貿易與國際金融的霸主地位可以對全球抽取美元稅,意味著美國可以將貨幣濫發帶來的經濟成本移轉給全世界承擔,其中以世界貿易額佔比越高者承擔越多,故身為世界第一大商品出口國的中國自然也承擔大部分苦果,這也是為何我長時間以來主張美元的地位相當程度是由中國支撐。
而在人民幣競爭之下(我們假設人民幣國際化真取得成效),美國不再能輕易移轉自身國家競爭成本給全世界時,通貨膨脹將回歸隨著貨幣發行量增長而提高,這對美國而言代表聯邦政府與州政府等一系列債券、連動債務的利息支出成本將提高,未來借貸成本也將提高。在一定程度上,美國政府或州政府可能因此停擺,甚或我們會看到州政府、市政府因此破產。
因此美國必然會嘗試在各方面阻止之。
提高上述中國的國家邊際競爭成本也無可避免會是美國未來數十年的整體戰略目標。
所以我們看到美國從President Trump任期開始,嘗試尋找各種可以提高中國國家邊際競爭成本的手段。
然而在當今真實世界供應煉、服務煉、金流、資訊流高度分工交雜的局限條件下,我推斷任何一任美國政府、智庫都難以清楚釐清自身採取的任何競爭戰略是否會帶來意料之外的後果(unintentional consequences)。
a 舉例來說,比如美國政客錯誤判斷關稅手段制裁中國會有效,於是我們看到Trump任期貿易戰初期就是違背WTO規範,片面無理對中國出口商品加重關稅或其他非關稅貿易手段。
然而真正懂經濟學邏輯者看法多如我當時寫下的預判一樣 — 如果美國以關稅手段要抑制中國出口經濟,但關稅提高幅度不夠大不夠全面的話,則中美之間的貿易逆差狀況不但不會縮減,反而在某些不同彈性系數之下會增加。(見圖)
(中國出口美國統計圖)
反之,美國經濟將因自身對中國的片面關稅障礙而受創。
更進一步,若美國政客傻到真的將制裁關稅提到夠高,足以發生抑制中國出口額的效果,則美國經濟將必須付出重大代價,其中包括美元地位將大幅動搖。如前述貨幣政策問題,不但聯邦政府利息支出將壓垮政府財政,州政府乃至市政府破產潮亦不遠。故,我們看到即便是Trump也被迫停止更瘋狂的關稅壁壘措施。
b 再以半導體產業的光刻機為例,美國施壓荷蘭ASML禁止出貨中國廠商已經付費採購的光刻機,其結果反而是給中國光刻機或EDA廠商創造市場,協助排除了原本ASML強力的競爭。從經濟學角度來看這是一件很諷刺事情。
這是因為全球光刻機市場是一個高度技術集成的天然寡頭壟斷市場,除非有類似當年ASML與日本佳能之間的技術彎道超車(浸潤式UV光刻技術)特殊情況發生,否則後來者都會因為技術認證與攻克的巨大前期投資成本而被排除於競爭之外。
然而,從經濟學競爭的角度看,美國禁止ASML對中國出口,結果反而是讓中國半導體製造廠被迫轉向投資與採購其他中國光刻機供應商,使得原本在市場上幾乎無競爭力的後者,因美國的禁令創造的「競爭真空」環境而有了成長空間。
因此我們放大時間尺度來看,20年、30年後如果中國半導體設備商有了長足的進展,肯定要回過頭感謝美國政府政府的錯誤干預所創造的商機。
說到商機身為投資人的我們可以注意,在上述政客的錯誤決策中,一些轉瞬即逝的投資機會也會因政府干預而起。例如下一點。
c. Super Micro 間諜晶片事件,2018年10月美國知名商業性雜誌Bloomberg刊登新聞「The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies」聲稱Super Micro這家公司利用一顆米粒大小的間諜晶片替中國政府竊取資訊。
姑且不提一顆米粒大小,本身毫無無線射頻天線的晶片在當時技術上幾乎不可能竊取什麼資訊,2年多後海潮退去,不但美國政府或Bloomberg都未提出更進一步有力證據,整件事甚至根本就被遺忘。
當年我不但寫了幾篇文章駁斥這種謬論栽贓。還親自動手買入這家粉紅單公司,短短三天就賺了台轎車。
香港2019年暴動事件、2021年新疆奴隸棉花事件、最近新冠病毒向中國求償事件...等,我們都可以看到美國政客在試圖提高中國競爭成本的過程,會創造大大小小系統性或個體性的災難風險,例如前述Super Micro因栽贓性假消息股價從$20.61美元在一兩日內崩跌至$13左右,但隨著栽贓者無力提供更多證據,市場回歸均衡的過程,截至2021年5月28日,Super Micro股價已經來到$35。
這是說,某些因政治干預造成的個體性或系統性風險,雖然屬於不可預測的風落(windfall),但其中不乏類似Super Micro的例子,在隨後回到正常的價值位置。如W. Buffett所言:市場短期是投票機,但長期是磅秤。
d. 美國知名橋水基金創辦人Ray Dalio在其將於2021年11月初版的書籍」The Changing World Order」 已提前公開的第七章」US-China Relations and Wars」提出綜合國力歷史計算與國力表(見圖)
提出美國正處於信用擴張後期的大國階段,而歷史上處於此階段與新興國力上生階段的國家一旦發生國力曲線交叉時,多半發生大規模戰爭以重新均衡雙方與整體國際關係。
依其推論,中美兩國發生戰爭的風險來到史上最高點。
但這部分我持較保留態度,特別是新任President Biden政府的高達$6 triilion美元的聯邦預算案出台,我們注意到一者,美國聯邦政府支出繼續維持二次世界大戰以來的GDP高佔比--達25%,二者,預算增幅最大均在健康醫療(成長23.1%)、商務(27.7%)與環保(21.3%),然在國防(1.6%)與國家安全(0.2%)幾乎未有成長,甚至計入通貨膨脹因素,後二部門的預算是實質減少的。因此可推估此任政府對發生大型戰爭的預期心理。
四、 變種病毒的不確定性
這是最後最難評估的風險,在現階段的資產配置決策中不可忽略卻又幾乎難以估計。拔高到國家決策層面來看,這也是中國面對的最棘手風險之一。
結論:
以上是我從經濟學角度出發,非常簡略地預測中國在疫情後將面對的國內外經濟環境與挑戰。其中任何一項單獨提出要深入探討都會是長篇大論。還有一些我認為相對重要性較低的現象與局限條件轉變,本文也尚未涵蓋。
BTW,最後多提一句台灣獨有的風險:後疫情時代是否接種過疫苗有可能在相當時間內成為國際旅遊的必要條件。然如果台灣政府真的壓寶在台灣國產疫苗上,則在現今環境下有沒有可能不被世界多數國家組織承認?會是一個額外的成本。
參考文獻:
* The Wall Street Journal, 「Biden is the $6 Trillion Man」 (May 28, 2021), https://www.wsj.com/articles/biden-is-the-6-trillion-man-11622241749
* The Financial Times, 「The summer of inflation: will central banks and investors hold their nerve?」 (May 15, 2021), https://www.ft.com/content/414e8e47-e904-42ac-80ea-5d6c38282cac
* Ronald Coase, 「The Problems of Social Cost」 (1960)
* Ray Dalio, 「The Changing World Order: Why Nations Succeed and Fail」 (2021)
* Irving Fisher, 「The Money Illusion」 (1928)
* Mundell, Robert A. (1963). "Capital mobility and stabilization policy under fixed and flexible exchange rates". Canadian Journal of Economics and Political Science. 29 (4)
* Milton Friedman and Anna Schwartz, 「A Monetary History of the US, 1867-1960」 (1963)
* Milton Friedman, 「Money and the Stock Market」 The Journal of Political Economy, Vol. 96, No. 2 (Apr., 1988), pp. 221-245 「
* Allan Meltzer, 「Learning about Policy from Federal Reserve History」 (Spring 2010)
* Armen A. Alchian, 「Effects of Inflation Upon Stock Prices" (1965)
* 張五常, 「Will China Go Capitalist?」 (1982)
* 張五常, 「The Economic Structure of China」 (2007)
* Ronald Coase and Ning Wang, 「How China Became Capitalist」 (2012)
* Alfred Marshall, 「Principles of Economics (8th ed.)」 (1920)
文章連結:
https://bit.ly/3vD1B2o
c to b舉例 在 OP凱文 Youtube 的最讚貼文
0:00 今天我們要來介紹如何用選擇權的價差策略
來達到長期穩定獲利的方法
1:28 為什麼要做價差
a.已知最大風險,不會因為黑天鵝而被抬出場
期貨有可能會因為跳空,而出現無法預期的虧損
甚至不用談到跳空,有的時候你可能只是去忙一下
回來一看卻發現,怎麼豬羊變色了
但是垂直價差策略在你一開始建立好的時候
就已經知道最大虧損最大獲利是多少
以及損益兩平點在什麼位置
你可以抱著價差安心上班,安心睡覺
但如果是做期貨,你可能就三不五時會想要打開來看現在指數在哪
b.比起期貨,選擇權價差更能增加你的勝率
撇開技術分析不談(因為要談的話其實對期貨對選擇權都是同樣的影響)
期貨在進場之後,上漲下跌機率其實就50%50%
但是價差可以透過履約價的調整,來增加你的勝率
舉例來說,指數17000
期貨多單進場之後,就是以此為分水嶺,上漲賺錢下跌賠錢
但選擇權價差可以選
例如我作16800-16900看多價差,我會有一百點空間
結算在16900之上我都是獲利的
也就是說即使指數是下跌,但我最後也是獲利的
當然這個不能下跌太多啦,下跌太多跌破我看多價差做的履約價的話也還是會受傷的
當然,有一好沒兩好
選擇權也不是萬能的
如果我們要選擇更高勝率的履約價,最大獲利就會降低
反之,如果我們想要最大獲利高一些,勝率也就會低一些
(例如現在指數在17000,我想做多,
選擇16900這個履約價去做看多價差,我會有比較好的獲利,但勝率低
選擇16800這個履約價去做看多價差,獲利會比較差,但勝率高)
不過我這邊想要跟大家分享一個觀念
你先求穩,再求多(先求有,再求好)
意思是如果你要做的話我會建議你先做勝率高的組合
雖然他最大獲利低,但你積少成多慢慢累積資金
後面慢慢增加你做的組數,整體獲利也會往上升
c.保證金比期貨低,可有效運用你的資金
小台的保證金要四萬多
但我們選擇權做價差,一組的保證金最低只要2500
因為他的保證金計算方式是用兩個不同的履約價之間的差去乘以50元
也就是說如果我今天做一組16850跟16900的價差
那我的保證金就要(16900-16850)*50=2500
不過通常我建議去做100點價差的組合,所以保證金要5000元
再高一點的150點價差或200點價差也可以,但相對來說保證金就會變貴
如果需要的保證金太高,小資族要去操作的話會比較難受一點
這樣對你後續部位的調整可能會比較沒有彈性空間
7:32 如何做價差
a.他其實就像是替賣方部位加一個保險
舉例來說,今天我認為指數不會跌破16900
那我就會在履約價16900的位置賣出賣權(不認為會下跌)
但畢竟沒有人能夠準確預測未來
如果接下來跌破16900,我會有很大的風險
所以我在16900之下的履約價加買一個賣權
例如我在16800這個履約價買進賣權
那麼當指數下跌的時候
這個16800買進賣權的部位會獲利,也就會幫我cover我原本的虧損
以上的舉例把它們組合起來,就會變成是一個看多價差
b.看多價差與看空價差的組法
那其實你要組看多價差或看空價差呀,用買權或賣權都是可行的
重點在於你做的履約價
今天如果你想做看多價差,只要你買低履約價賣高履約價
就會成為看多價差
反之,如果你買高履約價賣低履約價,就會變成看空價差
不過今天介紹的這套方法,你做價差的話
我會建議用賣權去組看多價差
用買權去組看空價差
原因是流動性的問題,我們要挑選成交量大的履約價去做
不然理論上買權還是賣權組其實是沒有差異
詳細的細節可以參考我之前寫的關於價差的文章或影片
在我的頻道裡面有一個關於選擇權策略,一系列的影片
其中有詳細介紹關於履約價對於價差策略流動性問題的部分
在這邊我們就不多贅述了
前面有提到,我會建議各位先求穩再求多
所以我會建議這種價差組合你要去做賺賠比低於1的
因為通常賺賠比低,也意味著他的勝率是比較高的
賺賠比就是最大獲利除以最大損失
通常我習慣做賺賠比0.1~0.3的組合
因為通常這樣的勝率其實蠻高的
而獲利嘛,雖然你可能會覺得一組5000元保證金只能賺幾百~一千多,感覺很少
但實際上我們把它換算成年報酬,你會發現這種東西的報酬率是高於其他投資工具的
c.要記得做複式單,或之後合併(保證金優化)
各位要記得,如果你要做這樣的策略
一開始要以複式單的形式進場
因為如果你是一個買方部位跟一個賣方部位分開下單的話
那個賣方部位會需要很多很多保證金
如果這樣的話就沒有我們一開始說的"有效運用你的資金"這個優勢
那如果你本來就是先做一口買方之後因情勢變化才多做一口賣方的話
我會建議你去把這兩口單合併成一組價差
保證金會從好幾萬變成只要幾千元,這樣能夠節省你的保證金
13:51 具體行動
以上大概介紹了一些你在做價差時需要注意的一些基本事項
那如果對於價差或者選擇權其他相關知識不瞭解的部分
可以參考我的YouTube頻道或者Blog文章
裡面有很多關於選擇權的知識補充
接下來要介紹的這個策略
是你大部分的情況下都可以使用的策略
而且做法並不難,你只需要懂均線,會看支撐壓力表
這樣其實就足夠了
指數走勢長期是多頭,在月選做看多價差
如果你要我去猜下一秒指數是漲是跌,我會跟你說我不知道
我猜中的機率大概跟丟硬幣差不多
可是如果時間拉長一點,我就可以提升我猜對的機率
為甚麼?因為股市有所謂的趨勢
當股市趨勢是處於多頭趨勢的時候,要我猜明天是漲還是跌,我會選擇猜漲
也許不是100%穩贏,但至少也是贏多輸少
反之,在空頭趨勢,要我去猜明天漲跌,那我會猜明天下跌
打開K線圖來看你就會發現,在多頭趨勢看到的是紅多綠少,對吧
因此,我們要跟著趨勢去做,因為這樣的話勝率是站在我們這邊的
除此之外,我們也可以發現股市的走勢長期來說是多頭趨勢
那我們的基本目標就出來了:
長期來看我們要做多頭價差
至於選擇權要做周選還是月選,我們要用月選來做多頭價差(周選存續時間太短)
利用均線作為基準,支撐壓力表作為輔助
所以打開K線圖,你會發現我們簡單用大家常看的5、10、20MA就能辨別趨勢
當現在是多頭排列時,股市為呈現多頭走勢
反之,變成空頭排列時,往往都是處於空頭走勢
所以我們在多頭走勢的情況之下
把我們多頭價差的履約價,建立在20MA的位置
也就完成了我們該做的事情
這邊可以看一下這三張圖
上面這張是多頭排列的樣子
下面這張是空頭排列的樣子
有的時候也有可能會出現糾結的狀況
像中間下面這張
但有時候也會遇到一個問題
就是指數可能離20MA太遠,這時候做的價差可能最大獲利太低
低到如果算上手續費跟稅,你可能還倒賠
那我們可以做一些修正
去看看當時的支撐壓力表的支撐在哪裡
並且以此作為基準去抓我們可以做的位置
下一張投影片我們來看一下支撐壓力表
支撐壓力表是一項很好用的工具,它可以幫助不會畫線抓支撐壓力的新手
找到現在市場上大家認定的支撐與壓力
解讀支撐壓力表,我們要站在賣方的角度去思考
因為賣方留倉會有壓力,但買方沒有
所以你看買權與賣權變化量最大的地方,搭配賣方角度思考
舉例來說
你看到買權是17650變化量最大,賣權17000變化量最大
搭配賣方角度思考
賣出買權在17650,表示市場上的大眾認為不會漲破17650
賣出賣權在17000,表示市場上的大眾認為不會跌破17000
那這樣我們的月選看多價差,就可以建立一個16900-17000的看多價差
這裡補充一下,雖然我們是去做月選看多價差
但支撐壓力表我們還是觀察該周的支撐壓力表,而不是該月的支撐壓力表
除非到第三個星期三
(當然,偶爾會有特別的例子,例如之前日誌影片中有提到
當兩大法人都在做買進賣權的時候,支撐壓力表的支撐其實就沒有支撐效果了https://www.youtube.com/watch?v=R2bwQXrZOPI)
偶爾會有回檔,在周選做看空價差
但股市也是有時晴有時雨
總是會有回檔下跌的時候
這時我們可以利用短均線5MA來作為判斷基準
如果指數跌破五日均線
那我們就可以在這個時候做空頭價差
履約價可以抓前面的高點作為參考基準
另外,由於我們是判斷回檔
所以不需要把這個空頭價差做在比較長期的月選
而是做在比較短期的周選
如此一來這個空頭價差就能替我們月選多頭價差沖銷方向上的風險
其實如果你對選擇權已經有接觸過的話
你應該會發現,這其實是一個變形的兀鷹
只是兀鷹策略會做在同個時間的契約裡面
又或者你也可以把它當作是時間價差或者對角價差
但上述兩者會有裸賣部位
但我們這個策略在周選與月選都是價差,風險是有保障的
26:02 總結
這裡我們就給明確定義
a.在均線多頭排列時,做這樣的策略
每個禮拜固定做一組看多價差,我推薦星期五做
而在做這樣策略期間,如果遇到空頭排列,看多價差要停損出場
(空頭排列:5MA,10MA,20MA)
如果均線糾結在一起,則暫停動作(10MA,5MA,20MA,or 20MA,5MA,10MA)
b.做月選多頭價差,位置做20MA
若獲利空間不大(指數位置離20MA太遠),參考支撐壓力表的支撐
(to新手:如果要談技術分析的話,支撐通常會是前面的低點)
c.跌破5MA,在周選做看空價差,位置選在跌破五日均線前的高點
(這裡注意,不是做在5MA喔!是做在前面的高點)
補充:
a.新手的話我建議本金5萬來做這樣的策略
雖然說你其實不需要這麼多資金,但至少你一開始輸的話
比較不會有壓力
b.逆向的月選看空價差,周選看多價差這種做法並不建議
因為空頭走勢又急又兇
這樣做可能討不到甜頭,倒不如直接做買進賣權
▼凱文的選擇權課程,適合新手、小資族,讓你瞭解如何運用選擇權獲利!▼
https://optionplayerkevin.teachable.com/
▼歡迎加入會員▼
小額贊助,可以在留言區使用特別的專屬貼圖
鐵粉會員,除了貼圖,每天我會與你分享我對盤勢的想法
https://www.youtube.com/channel/UCL2JKimITPdd37tEzJrHPAg/join
▼底下有各種資訊,歡迎點開參考▼
✅選擇權討論社團:http://optionplayerkevin.pros.is/groupkevin
✅IG:http://optionplayerkevin.pros.is/instagramkevin
✅FB:http://optionplayerkevin.pros.is/facebookkevin
✅line社群:https://lihi.tv/YcKVl
這個頻道專注在選擇權的話題上
股票、期貨、基金也歡迎大家來討論
希望大家都能變得更有錢,邁向財務自由
本集節目由蝦皮贊助播出
https://shp.ee/2dues3k
----------
***重要申明:影片主要為分享我個人的想法,並非投資建議,請觀眾在操作前仍需三思。***
c to b舉例 在 衛生福利部 的美食出口停車場
備註:本圖僅是舉例,這些場域是有成為A、B、C潛力的可能單位,惟A、B、C須具備之服務項目及條件等,正與各界密切討論中。 ... <看更多>