📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有30部Youtube影片,追蹤數超過1,120的網紅PossibleHK,也在其Youtube影片中提到,?YOUTUBE一小時免費精讀班? https://bit.ly/2V5wpaV ☝?☝?☝?☝?☝?☝?☝?☝?☝?☝? 很多人都想透過投資/做生意賺錢達至財富自由,而被動收入更是財務自由不可或缺的重要元素。在香港,很多人都會選擇投資股票收息或者投資物業收租。可是除了這些之外其實很多創業家都會選擇...
「algo trade教學」的推薦目錄:
- 關於algo trade教學 在 Taipei Ethereum Meetup Facebook 的最讚貼文
- 關於algo trade教學 在 我要做股神 Facebook 的最佳解答
- 關於algo trade教學 在 我要做股神 Facebook 的最佳貼文
- 關於algo trade教學 在 PossibleHK Youtube 的最佳貼文
- 關於algo trade教學 在 我要做富翁 Youtube 的精選貼文
- 關於algo trade教學 在 我要做富翁 Youtube 的最佳貼文
- 關於algo trade教學 在 Algo Trading 程式交易達人 的評價
- 關於algo trade教學 在 Pin on 10個TrAder守則 - Pinterest 的評價
- 關於algo trade教學 在 Algo trader-推薦/討論/評價在PTT、Dcard、IG整理一次看|2022 ... 的評價
- 關於algo trade教學 在 Algo trader-推薦/討論/評價在PTT、Dcard、IG整理一次看|2022 ... 的評價
algo trade教學 在 我要做股神 Facebook 的最佳解答
連MultiCharts都不懂?不要說自己識程式交易!Algo trade需要有軟件幫助,否則得物無所用,Dennis今集會由零起步,教大家由下載、安裝、匯入數據、回測,逐步學習使用MultiCharts的方法,用實例示範如何操作,今集絕對值得大家Save下來,日後參考!
MultiCharts 國際版:multicharts.com
MultiCharts 中國版:multicharts.cn
════════════════════
回流加國 唯一留下的 - - 電子版投資天書
!!由淺入深毫無保留全公開!!
施傅【10年財務自由】1小時簡介+工作坊 (免費試看)
現在開始 ▶▷▶ gregorysy.com/
════════════════════
「我要幫你畀首期」遊戲 贏高達52萬首期幫你上車!
即玩▶▶ money-tab.info/youtube-games?fp=e1019
✓ 訂閱【我要做富翁】頻道 ▶ bit.ly/35LOy2J
本月免費活動【★Top 5】現正接受報名:
1. 贏在美股試堂分享會(Online)▶ money-tab.info/ussjac?fp=e1019
2. Kyle英國房地產分享會(Online)▶ money-tab.info/engkyle?fp=e1019
3. 阿業期權計算機分享會(Online)▶ money-tab.info/optyip?fp=e1019
4. 陳Sir期指分享會(Online)▶ money-tab.info/optchan?fp=e1019
5. Jasper期滙商品分享會(Online)▶ money-tab.info/comjasp?fp=e1019
6. Jonathan MT4程式交易(Online)▶ money-tab.info/mt4jon?fp=e1019
所有課程/活動一覽: money-tab.info/activity?fp=e1019
✓ APP下載: onelink.to/mtapp
✓ 升級版: money-tab.com/membership
❖訂閱【富翁電視MTTV】頻道:
bit.ly/35dJW4Y
❖訂閱【我要做富翁】頻道:
bit.ly/35LOy2J
❖讚好Facebook專頁:
facebook.com/203349819681082
❖追蹤Instagram專頁:
instagram.com/money_tab/
#Multicharts #回測 #ALGO #程式交易 #Algotrade #我要做程式交易
algo trade教學 在 我要做股神 Facebook 的最佳貼文
完整影片▶ money-tab.com/2019/11/29/25336
使用技術指標時,我們如果採用預設參數,表現一般都不理想,有時甚至錄得虧損。如果要作出優化,便涉及大量的回測,大部份朋友會採用 Excel 進行 ,貪其手到拿來,不過 Excel 本身都有大量公式運算,面對較難的指標,有時實在不知道如何入手。其實 MT4 都有內置優化的功能,而且設定比 Excel 簡單得多了,只要幾個步驟,就可以快速得出結果。
#量化分析 #Excel #程式交易 #教學 #回測 #示範 #MT4 #量化交易 #Algo Trade #街頭智慧 #MetaTrader
algo trade教學 在 PossibleHK Youtube 的最佳貼文
?YOUTUBE一小時免費精讀班?
https://bit.ly/2V5wpaV
☝?☝?☝?☝?☝?☝?☝?☝?☝?☝?
很多人都想透過投資/做生意賺錢達至財富自由,而被動收入更是財務自由不可或缺的重要元素。在香港,很多人都會選擇投資股票收息或者投資物業收租。可是除了這些之外其實很多創業家都會選擇跟不同的平台合作提早退休,或是起碼能夠邊做自己喜歡的工作邊賺錢。當然YouTube賺錢更是近年的大趨勢,因為它本身就是一個很龐大的被動收入系統。
----------------------------------------------------------------------------------------------------------------------
【影片資源】
?網路研討會“10 週突破 10 萬訂閱的秘笈“?
https://bit.ly/2V5wpaV
? 每個Youtuber必備的數據分析工具(免費)
https://bit.ly/2Un7YGO
?無限影片音樂/聲效下載
https://bit.ly/2WQvkGo
----------------------------------------------------------------------------------------------------------------------
【Social Links】
Instagram : https://www.instagram.com/m_jacky/
https://www.instagram.com/ttncc/
https://www.instagram.com/hellstonchc/
----------------------------------------------------------------------------------------------------------------------
【My Gear】
Camera 1: Sony a7III: https://amzn.to/2SsjWOO
Camera 2: DJI OSMO POCKET: https://amzn.to/37eR692
Mic 1: Rode VideoMicro: https://amzn.to/2Mvuc5m
Mic 2: Rode Wireless Go: https://amzn.to/34U5py8
#賺錢 #創業 #被動收入
algo trade教學 在 我要做富翁 Youtube 的精選貼文
不會寫程式,又不懂設定 EA,又想從投資中賺被動收入?除了將錢放銀行收息,另一個方法就是把錢交給基金經理去投資。不過基金門檻高,初哥本金不多又要支付管理費,利潤有限。其實網上已有不少投資高手,會公開自己的投資策略,我們只要付一個相宜的月費,就可以使用 Copy Trade,複製他們的部署,坐一下順風車。今集 Jonathan 會示範一下,在 MT4 上如何使用這個功能,跟著高手一齊賺錢。
#街頭智慧 #程式交易 #教學 #新手 #mt4 #metaTrader #學投資
======================
1) 近期舉辦活動一覽:
Jonathan MT4自動交易程式分享講座+試堂 ▶ https://edu.money-tab.com/mt4jon?yt=1
新我要做富翁 試堂分享會 (香港站)▶ https://edu.money-tab.com/sharing-trial?mts=yt
Kyle 英國房地產分享會▶ https://edu.money-tab.com/activity-reg-c?Kyle=yt
Jasper 期滙商品分享講座+試堂▶ https://edu.money-tab.com/activity-reg-c?jaspf=yt
所有課程/活動一覽▶ https://edu.money-tab.com/all-event?all=yt
2) 《我要做富翁》網上版登入/APP下載:http://onelink.to/mtapp
3) 緊貼我們社交平台,不錯過任何免費分析/教學:
訂閱YouTube頻道: https://youtube.com/channel/UCdWNwPuaS1o2dIzugNMXWtw?sub_confirmation=1
讚好Facebook專頁:https://facebook.com/203349819681082
4) 想加入我們,可將CV EMAIL到▶ hr@money-tab.com
algo trade教學 在 我要做富翁 Youtube 的最佳貼文
使用技術指標時,我們如果採用預設參數,表現一般都不理想,有時甚至錄得虧損。如果要作出優化,便涉及大量的回測,大部份朋友會採用 Excel 進行 ,貪其手到拿來,不過 Excel 本身都有大量公式運算,面對較難的指標,有時實在不知道如何入手。其實 MT4 都有內置優化的功能,而且設定比 Excel 簡單得多了,只要幾個步驟,就可以快速得出結果。
#量化分析 #Excel #程式交易 #教學 #回測 #示範 #MT4 #量化交易 #Algo Trade #街頭智慧 #MetaTrader
======================
1) 近期舉辦活動一覽:
Jonathan MT4自動交易程式分享講座+試堂 ▶ https://edu.money-tab.com/mt4jon?yt=1
新我要做富翁 試堂分享會 (香港站)▶ https://edu.money-tab.com/sharing-trial?mts=yt
Kyle 英國房地產分享會▶ https://edu.money-tab.com/activity-reg-c?Kyle=yt
Jasper 期滙商品分享講座+試堂▶ https://edu.money-tab.com/activity-reg-c?jaspf=yt
所有課程/活動一覽▶ https://edu.money-tab.com/all-event?all=yt
2) 《我要做富翁》網上版登入/APP下載:http://onelink.to/mtapp
3) 緊貼我們社交平台,不錯過任何免費分析/教學:
訂閱YouTube頻道: https://youtube.com/channel/UCdWNwPuaS1o2dIzugNMXWtw?sub_confirmation=1
讚好Facebook專頁:https://facebook.com/203349819681082
4) 想加入我們,可將CV EMAIL到▶ hr@money-tab.com
algo trade教學 在 Pin on 10個TrAder守則 - Pinterest 的美食出口停車場
Sep 5, 2020 - WealthPapa 財富爸爸致力於提供不同類型的財富相關線上教學, ... 投資教學#Day Trade #日內交易#短炒#技術分析#程式交易#algo trade #風險管理#投資 ... ... <看更多>
algo trade教學 在 Algo trader-推薦/討論/評價在PTT、Dcard、IG整理一次看|2022 ... 的美食出口停車場
Algo trader -推薦/討論/評價在PTT、Dcard、IG整理一次看|,另外有Algo trader,algo中文,algo幣,algo幣是什麼相關文章推薦|追蹤網紅動態,熱門網紅排名 ... ... <看更多>
algo trade教學 在 Algo Trading 程式交易達人 的美食出口停車場
Algo Trading 程式交易經驗分享《六》 - 寫交易程式的入門須知「上集」 上回講到想開始寫Algo係少啲興趣都唔得,工作量大,心血量大, ... 可以自己youtube搵下教學。 ... <看更多>