📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
同時也有33部Youtube影片,追蹤數超過3萬的網紅睿富財經頻道WealtHub Channel,也在其Youtube影片中提到,人算天算不如機算,運用「程式交易」對投資者有何好處?又如何應用至虛擬貨幣投資上?今集《#致富解碼》香港程式交易研究中心聯合創辦人 #蔡嘉民(Calvin)向你一一講解,並分析虛擬貨幣及大市表現走勢,資訊非常豐富,去片! 【第36集主題:#程式交易】 主持:天窗文化集團 CEO #李偉榮、...
「algo trade」的推薦目錄:
algo trade 在 我要做股神 Facebook 的最佳貼文
見人說人話,見鬼說鬼話,見程式也要說程式聽得懂的說話!學會定義不同的交易策略,用程式的語言,也就是Algo Trade的藝術。上集分享過如何運用背馳做交易,今集就將背馳策略應用在程式交易上面,試看一下回測結果如何,做好「定義」這一步,餘下的,交給程式去做吧!
════════════════════
🔥預售火速售罄!把握機會免費體驗🔥
施傅【10年財務自由】1小時簡介+工作坊
立即試看:gregorysy.com/
════════════════════
💥預售3日極速售罄 今日正式發售💥
【零至千萬加速器】1小時簡介+工作坊
免費試看:edu.money-tab.com/pages/accelerator
════════════════════
______________________
Dennis 我要做程式交易分享講座: money-tab.info/mutden?fp=f0121
本月免費網上課程/活動一覽: money-tab.info/activity?fp=f0121
______________________
施傅新書「量化交易」手冊
網上即買: money-tab.info/2020-book-purchase?fp=f0121
✓ APP下載: onelink.to/mtapp
✓ 升級版: money-tab.com/membership
❖訂閱【富翁電視MTTV】頻道:
bit.ly/35dJW4Y
❖訂閱【我要做富翁】頻道:
bit.ly/35LOy2J
❖讚好Facebook專頁:
facebook.com/203349819681082
❖追蹤Instagram專頁:
instagram.com/money_tab/
#背馳 #RSI背馳 #隨機指數 #ALGO #程式交易 #Algotrade #我要做程式交易
algo trade 在 葉朗程 Facebook 的最佳解答
市場氣氛好,提供了一個十分有利的交易環境,對於一個長倉 (低買高賣) 的投資策略相對容易。
再 update 下這個 algo:今天在 20.25 的價位全數沽出了 1308。如果你之前有 follow 這個 algo 的投資倉,你會留意到 1308 的平均買入價是 18.08,現在變成 17.923;原因為何,最後交待。
有讀者頗眼利,留言問過這是否一個跟隨 VCP 的 algo。如果純是一個玩 VCP 的 algo,那就不值得投資了,因為 Mark Minervini 在自己的書裏都提到,VCP 的勝算大概只是 50%。
詳細的分別就在容後的收費平台 (二月一號推出) 再說,但簡單一句就是,這個 algo 有時候會體現到 VCP 的影子,但跟 VCP 有很多不同的地方。舉一個例子: Mark Minervini 的 volatility contraction 建基於 price action,但這個 algo 的 volatility contraction 則建基於 average true range。所以,這個 algo 的買入決定做得更保守。
玩任何遊戲都一樣,要控制和了解自己的輸,才可以更有把握怎樣贏,所以之後的收費平台絕對不是一個投資專欄,而是一個探討什麼是 algo 的空間。透過實戰和真錢,你會看到這個 algo 的操作,你會看到這個 algo 贏,你會看到這個 algo 輸。
現在解釋一下,為什麼 1308 的平均買入價會由 18.08 變成 17.923。
原因是我犯錯。
Algo 負責運算,最後操盤還是一個活生生的人,也就是我。
於一月六號當天,algo 的運算結果是,1308 在 17.9 這個水平有值博率。但由於我那天開了一個很長的會議,要等到 18.08 才買入 1308 的 20000 股。買入之後,algo 的設計者頗有微言,因為與其在一個高於 algo 運算結果的價錢買入,倒不如不要買了。
於一月十五號,1308 的股價下跌,跌出了 algo 運算的 17.9 買入位,而我就在 17.86 這個位置多買入了 50000 股。買入之後,algo 的設計者又投訴。這次我堅持自己做了一個正確決定,因為 17.86 這個買入價並沒有跌出 algo 的 stop loss 位 (16.21)。
於一月十八號,1308 在開市後再跌,我再於 17.5 買入了 20000 股。設計者不高興是當然的,但我作為一個有賭性的正常人,或多或少的 gut feeling 操作是無可避免。不過玩得 algo,就要明白 algo 的意思,其實就是 a set of rules you promise to follow,下下 gut feeling,也是 defeat 了初衷。最後,我同意在 18.26 和 18.36 的位置分別沽出 20000 股和 50000 股。也是因為這個原因,交易系統自動降低了 1308 的成本價。
回頭看,因為我「被逼」沽出額外的 70000 股,所以這個 trade 少賺了十多萬。但我並沒有對設計者說「都話咗啦」之類的話,因為我絕對同意:algo 的作用是管理好投資者,是投資者的戰友,要善待,不抗衡。
聽到 algo 這個字,有人會問,你的 Sharpe ratio 是什麼,即是風險有幾大?
所有投資的最大風險,往往就是自己。
P.S 塗黑部份是一隻跟 algo 無關的股票,所以不想混淆視聽。
algo trade 在 睿富財經頻道WealtHub Channel Youtube 的最讚貼文
人算天算不如機算,運用「程式交易」對投資者有何好處?又如何應用至虛擬貨幣投資上?今集《#致富解碼》香港程式交易研究中心聯合創辦人 #蔡嘉民(Calvin)向你一一講解,並分析虛擬貨幣及大市表現走勢,資訊非常豐富,去片!
【第36集主題:#程式交易】
主持:天窗文化集團 CEO #李偉榮、資深 iBanker #蕭少滔
業界嘉賓:香港程式交易研究中心聯合創辦人 蔡嘉民(Calvin)
➤ 【投資Hotspot】與你捕捉環球及香港市場投資先機 00:00
➤ 【致富解碼】 邀請業界人才暢談財經金融,深入淺出與你配置Smart Money 03:43
04:06 2021年上半年美國及香港市場事故多,是否與程式交易(Algo Trade)有關?
07:44 程式交易上季風險管理的表現是否比人手交易好?
09:40 程式交易有何優勢?
12:35 虛擬貨幣哪種程式買賣設定較安全?
17:22 如何分配AI程式交易及直覺投資的比例?
21:39 港股現時是否擺脫頹勢?
25:50 美股現況有何分析?
26:39 三大指數創新高,美國股市第二、三季有何表現?
29:00 如何配置虛擬貨幣?
31:00 預計Bitcoin走勢如何?
36:25 如何挑選值得投資的虛擬貨幣?
======================================================
【書籍推介】
《程式交易快穩準》 (蔡嘉民 著)
全書收錄程式交易基礎入門到進階的獲利策略,助讀者更能掌握短線交易的操作方法!
實體書、會員9折、全球運送 https://bit.ly/3nCnp9V
Google Play 電子書、試閱 https://bit.ly/3eKDhUB
各大書店現已有售
======================================================
【更多推薦影片】
➤蔡嘉民:【止蝕不止賺】程式交易新手入門必看 https://youtu.be/UvGbzu-A4eY
➤陸庭龍:對外匯、移民潮、人民幣、美金有何看法?https://youtu.be/w1Nl-BI9a-A
➤蔡金強:未來兩季最關注哪些板塊? https://youtu.be/ypPwkc79lTg
======================================================
【追蹤 WealtHub睿富,即可獲得最新財經金融資訊】
Facebook: https://www.facebook.com/wealthub.hk
Instagram: https://www.instagram.com/wealthub18/
YouTube: http://bit.ly/3938XAx
Website: http://www.wealthub.hk/
LinkedIn: WealtHub 睿富
投資涉及風險。本節目純為嘉賓個人意見分享,不構成任何投資招攬或建議。本節目對閣下因援引有關資料所引致的任何損失或損害概不負責。
algo trade 在 Sky Finance Channel Youtube 的最佳解答
窩輪解密
2021-1-08財女心經
主持: 孫天欣
嘉賓:飛雲
Day Day trade
嘉賓介紹
窩輪炒家,每日過百交易,捕捉短期升幅
Facebook Live現場直播,歡迎各位觀眾留言提問
逢星期五,6:00PM
大家訂閱 【天富財經SkyFinance 】
#algo #窩輪 #牛熊證# Sky Finance #財女心經
algo trade 在 我要做富翁 Youtube 的最佳解答
18歲時你在做甚麼?唸書?那 28 歲呢?工作?
Dennis 18 歲已炒股,用 $3,000 利是錢炒至 100 萬,然後熊市輸個清光。之後再投身投資界工作,高薪厚職下,仍在 28 歲辭去工作環遊世界,並研究程式交易。3年後,再靠著程式交易的收入,讓自己再去第二次歷時半年的環遊世界之旅。今日 #施傅 就和這個 #Algo達人 做個訪問,看看他是如何 #全職環遊世界。
____________________
❖訂閱【我要做富翁】頻道: https://bit.ly/35LOy2J
❖訂閱【富翁電視MTTV】頻道: https://bit.ly/35dJW4Y
_____________________
本月免費活動【★Top 4】現正接受報名:
1. 贏在美股試堂分享會(Online)▶ https://money-tab.info/ussjac?yp=e0520
2. Kyle英國房地產分享講座(Online)▶ https://money-tab.info/engkyle?yp=e0520
3. 阿業期權分享講座(Online)▶ https://money-tab.info/optyip?yp=e0520
4. Eric Sir期指策略分享講座(Online)▶ https://money-tab.info/futeric?yp=e0520
所有課程/活動一覽: https://money-tab.info/activity?yp=e0520
✓ APP下載: http://onelink.to/mtapp
✓ 升級版: https://money-tab.com/membership
❖讚好Facebook專頁: https://facebook.com/203349819681082
❖追蹤Instagram專頁: https://instagram.com/money_tab/
#Algo #程式交易 #Day Trade #全職炒家 #炒家 #我要做訪問
algo trade 在 Algo Trading 程式交易達人 的美食出口停車場
Algo Trading 程式交易達人. 1605 likes · 1 talking about this. 鑒於見到越來越多人學習自動程式交易(Algo Trading),本頁志在分享交流程式交易既基本教學及相關 ... ... <看更多>