網路與3C的世界
正在顛覆傳統思考的想像
.
又加上這個武漢肺炎
原本以為今年底應該會恢復大半
但現在似乎又朝著
可能就算有疫苗
也不一定能解決的世紀難題
.
世界的巨變如此劇烈
你確定還要停留在工業革命的思考模式
.....................
工業革命最需要的是大量優秀的工人
而台灣的家長與教師
許多人都還停留在工業革命
.
台灣從以前到現在
主流的教育思維
是孩子以後要去當別人的員工
來思考學習的模式
.
因此阿亮整理出了一套標準化思考模式
其實你應該很熟悉
從小到現在聽到的應該大都相同
.
功課好才有好學校
有好學校才有漂亮的文憑
有文憑才有好工作
.
換句話說,解釋的詳細點
.
所以學習就只是要有個好工作
好工作要做好SOP
所以做好SOP就可以當個好員工
就可以賺多一點錢,過好一點的工作
.
為了當個SOP的好員工
所以從小就要SOP的讀好書
也就是標準解答
寫出標準解答,就有好成績,就有好學歷,就有好工作,就有好收入,就能有好生活,一切都很好
.
恩恩,找出標準公式了
............................
機器人的世界
自駕車的出現
以後沒有工人、沒有司機
標準動作的工作,以後會越來越少
生產者的位置,會被越來越多的關燈工廠取代
(WA,那標準公式不就剉屎)
.
大數據的結果,不再需要原因就能找到事情的突破點
AI人工智慧的學習,已經控制著人類的主流思考模式
.
你所看到的GOOGLE、YOUTUBE、ANDROID、APPLE
這些耳熟能詳的英文單字
正用這兩種技術,改變與引領著世界
.
結論
你確定還要用工業革命的思維
教育你家的孩子,來面對未來的世界
以後可能大部分的醫生會失業
以後可能寫程式的工程師會被取代
電腦都可以寫詩寫小說,代替人們自動散布假消息了
GOOGLE都已經弄出,可以準確率超過8成的語言翻譯
.
清清自己的頭腦,你確定還不改變工業革命時代的思維
ai寫詩 在 Facebook 的最讚貼文
「今年參加了1400場視訊會議,沒有交到一個朋友」
疫情對AI行業所帶來的最大影響,是什麼?
今年最令人興奮的AI新技術、新應用,有哪些?
甚至未來10年、20年,AI發展的方向,又該何去何從?
針對這幾點,前陣子做了個有點意思的 MEET2021 年度對話,也在這裡分享,原文來自「量子位」微信公眾號:
……
站在2020年,如此不平凡一年的歲末,AI業界有太多諸如上述的問題急需回答。
要點
• 疫情帶來最大的影響,就是加快了資料化,加速了線上化和AI化。
• 疫情是巨大的災難,同時也極大推動了AI的進一步落地,這一年可能相當於三年的進程。
• 最讓人振奮的黑科技,是AlphaFold和GPT-3,後者對行業更具有潛在的顛覆力量。
• AI給社會帶來最大的價值,肯定不是黑科技。
• 擁抱AI是大家最大的機會,而且越早擁抱AI,就會擁有更大的競爭力。
• 大陸的新基建會進一步推動AI新經濟,這會是一個新的時代,一次新的文藝復興。
• AI從業者們需要記得:權力越大,責任越大。
▎疫情加速AI化,一年相當於三年
李根:再次感謝開復老師來幫我們總結這一年,與往年相比,今年最大的不同是什麼?
李開復:今年的工作節奏改變了,我一共參加了1400次線上會議,非常有效率,進行了特別多的開會和演講。但是1400次這樣的會議,沒有讓我交到一個朋友。所以我覺得線上會議雖然帶來了效率,但是還是要回歸面對面的本質交流。
李根:但受疫情影響的這個過程,也是線上化被加速的過程?
李開復:這是疫情帶來的最大的影響——加快了資料化、線上化和AI化。AI最重要的核心就是海量的資料,可以催化更多新的應用。
比如線上會議,我們並不見得那麼容易區分視訊會議中的那個人,是不是真人。所以有時候線上講座或者網路不穩定的時候,我們會選擇錄製,而且錄製一次,也可以用很多次。由此延伸,以後線上上,比如你做推銷,做客服,甚至做電視節目,其實都是可以用虛擬人來替代的。我們現在還無法造出一個讓你分不出來的3D虛擬人,但是在視頻裡完全可以。DeepFake不是一個向善的應用,但是把它的技術應用在建設性、有益的方向,我覺得可以帶來特別多的應用。而且有了資料,各行各業就可以評估哪些工作或者流程,可以進一步數位化。數位化以後,重複性的工作就可以被AI取代了。
此外,除了社交距離縮短,可以發現機器人出現的頻率越來越高。比如,我們去餐館時,會有機器人送餐到客人那裡。很多機器人產品遍佈很廣,無論是倉庫、工廠,甚至我住的公寓裡面,每次最後配送都是機器人了。在美國情況也很相近。美國以前也沒有支付寶,也沒有美團,現在都開始有了。所以總結起來,我覺得新冠疫情是巨大的災難,但與此同時,也極大推動了AI的進一步落地,帶來數位化、IT化,帶來AI化,可能這一年相當於過去的三年。
▎AI最大的經濟價值並非“黑科技”
李根:今年依然有令人興奮的技術進展?
李開復:今年最讓人振奮的技術是DeepMind的AlphaFold,還有OpenAI的GPT-3。其中,我認為可能對行業更有潛在顛覆力量的是GPT-3。不見得說是用它生成小說什麼的,而是用特別大的海量、自然語言資料,訓練一個預訓練模型,這個模型是可以應用到很多新領域,比如說寫詩、做對話,或者是寫小說等等。而且這個新技術一推出,其他公司很快就採用了,比如說搜尋引擎,因為這個技術已經能提高了好幾點的精確度;此外,OCR在提升,客服也在提升,微軟小冰也在繼續提升對話精確度。
所以我覺得這種預訓練語言模型,它可能帶來的就是一次性訓練一個巨大的模型,然後快速產生AI應用。當然,也存在很多的問題:
• 它做一個模型要花1200萬美金,一般的創業公司該怎麼辦?教授學者該怎麼辦?
• 此外,訓練一個模型就要燒掉好多能量,這對於我們節能的未來又怎麼辦?
• 還有,巨頭會不會產生壟斷,只有巨頭公司等才能做這麼巨大的模型。
當然,GPT-3本身還沒有驗證足夠多的商業價值,但毋庸置疑這是一個最大的科技創新。不過我想強調的是,AI給社會帶來最大的價值,或者帶來最大的經濟價值,肯定不是這種黑科技。黑科技會有很多,我們也在繼續投機器人等項目。但是,我覺得今天AI的技術已步入成熟,可以被傳統公司擁抱。比如剛成為AI獨角獸的創新奇智,就可以看到AI給傳統行業,無論是製造、健康、醫療、零售、金融、保險、物流等等,都可以帶來立竿見影的巨大效果。所以今天我在這裡呼籲一下,擁抱AI是大家最大的機會,而且越早擁抱AI,就會擁有更大的競爭力;越晚擁抱AI,生存的空間可能會被進一步壓縮。
李根:怎麼樣才能大家擁抱AI?
李開復:還是要有資料,說了這麼多打雞血的話,但是務實的來說,是不是今年傳統公司擁抱AI就會帶來價值?大部分是不會的。
因為AI是要吃資料的,所以就要求公司擁有海量的、結構化的、有標注的,達成商業目標的脫敏精確資料,而且最好是只有你有,別人沒有的,那你的機會就來了。
什麼樣的公司有呢?比如說銀行、保險公司天然就有,金融領域的資料必須要符合要求。而有些領域就會難一點,比如說做工業製造等等,需要先把你的工業製造替換成機械臂、替換成無人叉車,可能要放很多的感測器,才能瞭解機器出了什麼問題。所以對有些公司是很容易的,但一些公司卻是很難的。如果今天你有資料,趕快想怎麼去應用;如果你沒有資料,快想想怎麼把資料累積出來。
新基建推動AI新經濟
李根:剛才都在談這一年,而新基建被認為會奠定下一個十年的發展?
李開復:我們回顧中國人工智慧奇跡般地崛起之路,可以發現其中的創業者、移動互聯網、資料,還有大陸優秀高校培養的高科技人才,這些是最重要的。但其實,還有非常英明的政策。這不是一件容易的事。這在很多國家都有討論,例如美國,奧巴馬政府當時大力支持了一個新能源的公司結果沒有做成,受到了很多的垢病。
而中國就有很鮮明的對比,大陸的科技政策整體來說應該是讓民間、業界做他們擅長的事情,用市場經濟來競爭,而政府幫助他們做民間做不了的事情。比如說我們AI的崛起,很大的程度是因為各地有政府引導基金支持,這樣可以選擇性的去做LP,幫助早期的AI產業能夠創立起來。
另外,“新基建”政策的落實也是非常大的利好。新基建除了5G和大資料中心,還有IoT、人工智慧、智慧城市等多方面的落實,利好的政策會進一步的拉動中國經濟進一步地往數位化、智慧化方向轉型升級。所以,當政府把上述的事情做成並且形成一個平臺,讓創業公司以及大公司能用到,我覺得這就是非常明智的。
當然,新基建裡AI涵蓋的範圍有多大,一些新技術是否有機會納入?可能值得進一步探討。比如類似GPT-3等需要大量資源去做訓練,才能進一步推動起來的潛力新技術等。我們發現AI的訓練越來越貴了,已經不是一個教授團隊和創業公司可以承受的。對於這樣存在類似潛在爆發性成長的技術,是否能有機會能從更高的維度推動,值得期待。
李根:您最近也旗幟鮮明提出了“AI新經濟”,所以是時候用這個新概念來定義這個時代了嗎?
李開復:對,雖然很正面的描述,但是時候了,我最近在《紐約時報》寫了一篇專欄文章,裡面談到的就是說剛才講的疫情促進了資料化、IT化、AI化。疫情推動了各行業的數據化,其實一個隱憂就是“工作被資料化”了,可以被外包或者AI取代。當我們有這麼多機器人的時候,它也會取代很多藍領的工作,白領其實也是一樣的,很多後臺、BPO的工作,在做檔處理的,或者是做客服的,這些工作都會被挑戰。有些人會說我們要把技術發展的慢一點,但這些絕對不符合實際,因為沒有技術是會慢下來的。
AI新經濟一方面我們要擁抱這些技術進步,讓它儘快觸達每一個角落。但同時,它所帶來失業的問題,我們需要有一些針對性的應對措施。所以我的文章主要談的就是,怎麼樣能夠快速地讓社會認知,繁複的、無技巧的重複性的工作將會消失,然後如何重新訓練這一批人,幫助他們快找到新的方向,去做更有價值也更擅長的事情。與此同時,大家就能花寶貴的時間在我們更有價值、更熱愛的事情,比如藝術、公益等創意和決策類的工作,或者是多和親友相處,結交認識新朋友等等。
這將發揮人類的光芒,我把他稱為一個新的文藝復興,讓人可以再一次找到意義——人為什麼而存在?
▎全球化依然是必然之路,中國大陸軟體將占世界半壁江山
李根:上一次文藝復興伴隨著第一次全球化開端,但這幾年全球化進程似乎受阻?中國創業者想做80億人的生意,但事實證明很難。
李開復:全球化是必然之路,很多“美國至上”的人說中國是沒有創新的,只有中國人用中國的軟體,但是我們在座的每一位都知道,中國大陸過去10年發生了巨大了改變,這句話在今天是完全錯誤。因為中國的創新從TikTok到華為,到小米,到美團,還有很多創新的公司,包括我們AI四小龍,這些都是美國沒有的。所以我們應該非常的自豪,今天中國的創新至少在IT、AI的領域是有機會彎道超車的。有一些地方美國更強,技術更深,但是我們的商業化做得更快。在這種前提之下,我們自然也必然會走向全球。
我們怎麼樣走向全球呢?這裡我還要比較務實的說一下,其實很多國家的使用習慣和語言文化是有巨大差別的。如果今天要把中國所有好的產品都推到歐美,這其實不現實,因為歐美的使用習慣已經固化了。他們用的那一套無論是To C還是To B都很難去改變,但是我覺得其他的國家和地區,例如從東南亞到“一帶一路”所有的國家和地區,包括了中東、非洲、南美等,這些國家的用戶其實更像我們的年輕用戶。而且,他們使用美國產品的習慣還沒有固化,與此同時,美國公司不太重視這些市場,但是這些國家的經濟,我們認為未來都會起來的。
所以你剛剛說的“走向80億”,我覺得不現實,但是走向60億是可以的,應該是世界GDP的1/4,人口的3/4。我們的創業者是願意走出去的,所以我覺得出海會變得非常重要。我們的軟體出口、技術出口,人工智慧出口,這些一定會發生。在我寫的《AI·新世界》出版的時候我就說過,在10年之內,中國將占世界軟體的半壁江山。當時很多人也認為這是一個非常樂觀的預測,但是現在看來我們正在往這個方向去做,而且當時還沒有看到TikTok這樣的產品。但是我們要謹慎,不是說歐美這些國家還是相當牛,而是TikTok在歐美的成功,不是那麼容易複製的。
“+AI”會在各個行業開花結果
李根:剛才開復老師談到現在技術創業越來越難,您還會投技術公司嗎?
李開復:當然投技術公司,我剛剛講的每一句話,都是我們投資的策略,我講了那麼多對機器人看好,我講了對大語言模型特別看好,還會投的。只是說我們不能夠期待像過去出來那麼多,創新工場在過去的4年,我們的AI領域一共出了7家AI獨角獸;未來4年的小目標,先定個3家AI獨角獸公司吧。
李根:但AI深入傳統行業已是趨勢?最近創新工場還投了“農業”領域的公司,這是以前很難看到的。
李開復:你指的是極飛科技吧?但極飛不能按農業來定義,極飛科技的產品是很高科技的無人機和自動駕駛,場景是把農業工業化。
工業製造和農業生產大有不同,比如你想做智慧製造,用AI來做機器人,或者做一個iPhone,做衣服,做鞋子,場景不同要求是完全不同的。但是農業播種或者施肥等場景較容易標準化。比如棉花田、稻田等,較容易批量化大規模作業。
不但大陸是這樣,國外也是如此。目前,農業市場AI滲透率只有大約5%,我們對極飛本身不但非常認可,而且也認為這是非常好的國際化的產品。因為農業場景比如播種子等,在全球幾乎通用,沒有太多語言的障礙。
李根:可以解決80億人的吃飯問題。
李開復:是。(笑)
李根:剛才談論的都是傳統領域“+AI”的話題,不妨讓我們更發散一些,請您談談以下幾個領域可以如何“+AI”?比如今年最受關注的“線上教育”。
李開復:線上教育中國做的是非常好,互動化很強,而且是孩子真的很喜歡。但是一些課程,尤其是小朋友的,用一些卡通人物AI或許更有效果。我們可以想像,未來會是一些可愛的卡通人物作為孩子的老師,甚至可能有一些同學是虛擬同學。有氛圍,也更高效。
這種情況下,不但你的成本更低,而且小朋友考試分數更高,也提高了學習興趣。所以“+AI”後的人機互動模式,不僅可以降本提效,還能提升孩子趣味性。
李根:這個領域聽起來對開復老師挑戰不是很大,我們出一個難的,我們說一個雞尾酒如何“+AI”?
李開復:其實雞尾酒肯定是機器調得比人好,因為雞尾酒有不同的成分,機器可以算得更准。但是,我們要考慮的是,如果去酒吧喝酒,可能醉翁之意不在酒,而是要有一個非常善解人意的酒保來跟你聊天。所以我覺得以後酒保跟你聊一聊就可以了,酒還是要機器來做,歸根結底,機器調酒師替代不了人之間的交流和陪伴。
▎找對象也能“+AI”,媒婆AI知道誰最適合你
李根:不知道在酒吧,能不能順便把找對象的問題,用“+AI”的方式解決了?
李開復:這可能會在下一代成真——不過不是我的下一代,我的下一代已經有對象了。你們的下一代找對象,可能會跟今天傳統的方式完全不同。就像今天美團比你更知道你想吃什麼,攜程比你更知道你想去哪裡,今日頭條更知道你想看什麼,未來你的媒婆AI一定知道誰最適合你。
每一個人這一輩子找對象,可能就是周圍認識的人裡面找,無論怎麼算都是幾萬人,最多幾十萬人。但是,以後AI可能會更瞭解你,瞭解你是什麼人,瞭解你會喜歡什麼物件,它幫你推薦的人,一定比你自己找的人,或者朋友幫你推薦的人更靠譜,更合適。也就是說,你選擇的範圍可能不是從幾萬人裡面選一個,可能是在80億人中幫你選。
當然,最後的選擇權在你手裡,今天你靠朋友幫你推薦5個對象你選一個;未來AI幫你推薦的5個對象,會來自於80億人,會更貼近於你的需求。所以你們孩子的未來,一定會更幸福!
▎AI從業者也得有“希波克拉底誓言”
李根:謝謝開復老師,今天時間也差不多了,最後再請您站在明天給一些建議吧?比如站在20年後(2041年)思考,我們該有怎樣的責任和使命?
李開復:對於AI的工作者,我們今天都低估了AI道德帶來的一些影響。我們可能看到網上說隱私問題、公平問題,或者大公司掌握太多資料左右我們思考問題。但隨著大公司對AI資料的掌控,其實這些問題越滾動越嚴重,我們去怎麼處理?我覺得我們一定要做AI的從業者,就像醫療的從業者有一個叫做希波克拉底誓言,作為一生我要把人的生命作為最神聖的事情,我一定要捍衛。
做AI工作者其實不是一個工程師,你要考慮到所做的每一個演算法,你的每一個貢獻都有可能造成因某一個人種或者性別帶來的不公平待遇;可能會帶來某一些人不能夠被公司雇傭;可能會造成某些人終身可能沒法往上爬;可能會造成一些醫療錯判傷害人、會造成無人駕駛撞到人。
所以每個工程師應該有一個神聖的誓言,應該認真的去用各種工具,來確保自己做出來的軟體帶給人類的是進步,而不是帶來各種的這種不好的後果。我覺得要特別認真的看待自己的責任,With great power, comes with great responsibility. 我非常認可 “權力越大,責任越大”這句話。
其實AI的工程師、AI的從業者,你們的權力是巨大的,一定要重視自己的責任。同時,確保以後的用戶得到的是幫助和福利,而不是被傷害。
▎One More Thing
最後的最後,還有一個小小小環節,來一次今年的快問快答。
李根:今年最成功的個人股票投資?
李開復:Zoom。
李根:今年最想推薦的一本書或者電影?
李開復:《皇后的棋局》(The Queen’s Gambit)。
李根:今年最有啟發的一次交流?
李開復:跟尤瓦爾·赫拉利,《未來簡史》作者的一對一交流。
李根:到底米其林靠譜還是黑珍珠靠譜?
李開復:中國黑珍珠靠譜,國外還是要靠米其林。
李根:為什麼從一開始就不看好馬斯克的2020年百萬RoboTaxi?
李開復:馬斯克有一句名言,我認為最貼近他的個性。他說他一切預測都會成真,只是時間上別聽他的。所以我相信他會成功,只是可能會需要5年或者10年。
ai寫詩 在 Daodu Tech 科技島讀 Facebook 的最佳貼文
#島讀回顧 #人工智慧
今年島讀網站被搜尋最多次的關鍵字是「人工智慧」(AI)。
人工智慧近年的發展迅速,許多領域都能看到其應用。
島讀今年一篇《機器學習 — 知識工作者的未來》,以「文字產生器」GPT-3 討論人工智慧,獲得不少會員迴響。
---
寫論文很痛苦。有些人痛苦到整份照抄別人的論文。現在出現一線曙光,美國 OpenAI 公布機器學習模型 GPT-3(Generative Pretrained Transformer),堪稱是「萬用」的文字產生器。最近 GPT-3 開始封測,推出 API,更在矽谷引發轟動。目前已知有人用 GPT-3 寫程式、請牛頓解釋地心引力、回答醫學問題、摘要文章,甚至寫詩。
先說 OpenAI。OpenAI 是一個非營利組織,贊助者包括 PayPal 創辦人 Peter Thiel、Elon Musk 與 Salesforce 創辦人 Marc Benioff 等。其使命是確保通用人工智慧(Artificial General Intelligence)將用於服務人類,而非迫害人類。
GPT-3 則是其開發的語言生成模型,第三代的「文字產生器」(島讀去年討論過第二代)。使用者輸入一段文字,它就會生出下一個字,再繼續生出下一個字,不斷重複下去,直到人類喊停或是達到約 1,000 個英文字為止。例如我輸入:「天下分久必合,合久必 ___」,GPT-3 大概會預測下一個字是「分」。
如果我沒喊停,也沒有設定明確的任務,GPT-3 就會繼續生成下一個字,寫出一段故事或一篇文章。
或許你會問:「世界上文字千萬種,GPT-3 怎麼知道要寫論文或小說呢?」
這就是 GPT-3 驚人的地方:它是通用模型。只要使用者稍許提示,它就會自動調整輸出內容類型,不需要使用者另外精調(fine tune)。就像一個真的有用的 Siri,不管你丟什麼任務,只要是文字,它都接得下來。
例如有人簡短的提示(prompt) GPT-3「用 19 世紀作家 Jerome k. Jerome 的語氣寫一篇關於 Twitter 的文章」,GPT-3 就生出相當完整的作品。
只要是需要文字的任務,不論是回覆 email、寫新聞稿、翻譯外文、「翻譯」法律術語、編吉他和弦,甚至是寫程式,GPT-3 都能做得還不錯。一篇網路文章《GPT-3 可能是比特幣以來最重要的創新》更是格外轟動,因為讀者讀完才發現整篇都是 GPT-3 寫的。
相較於 GPT-2,GPT-3 效能是「暴力式」的飛越性成長。換言之,GPT-3 的基本架構與 GPT-2 幾乎一樣,只是參數由 15 億增加到 1,750 億(117 倍),但效果隨之大幅成長。這讓矽谷圈精神為之一振,因為代表機器學習仍可以透過擴大規模來成長。
雖說使用成本也等比增加 — 訓練一次 GPT-3 需要 460 萬美金 — 但能用錢解決的都是小問題。目前已知人類大腦的突觸約 1 百萬億個(100 trillion),是 GPT-3 的 1 萬倍。許多人不免幻想如果再來兩次升級 100 倍(共一萬倍),是不是就能逼近人類大腦了?
有成本就需要收入。OpenAI 現在提供 API,就是為將來商業化營運作準備。其他雲服務商如微軟、AWS、Google 也都開始提供機器學習「模型即服務」(Model as a Service, MaaS)。這大致可分三種應用:
● 垂直情境,簡單但量大的工作:如辨識異常、偵測錯字、回覆 email、回答客服基本問題等。這有點類似聘僱國中生實習,但聘雇的是無限個實習生。
● 垂直情境內,困難但狹隘的工作:以 AlphaGo 為代表。它打敗所有人,但只會下圍棋。
● 不限情境,多樣性比正確性重要的工作:以 GPT-3 為代表,如虛擬秘書、虛擬陪伴(《雲端情人》)、發想劇本、草擬程式碼、撰寫科技分析電子報(咦)等。
MaaS 固定成本高,因此會傾向集中於大型平台,特別是擁有資料的企業,如 Google。邊際成本現在也很高,但應該會逐漸降低,因此有利於擁有最多客戶(用量)的企業,如 AWS、微軟。
目前 GPT-3 率先大步起跑,將引發其他企業加大投資。其他企業需要差異化,因此會開發封閉的模型;GPT-3 則會是開放或開源的形式。同時,週邊的企業也需要開發工具,形成生態圈。例如目前運算的延遲嚴重,因此雲端的速度必須跟上。有更多相容的 app 提供更精準的提示,才能發揮 GPT-3 的價值。
⠀
想知道文章對 GPT-3 的原理、隱憂的討論,歡迎試用島讀的 1 元訂閱方案:https://bit.ly/3myOL0D
---
更多人工智慧內容:
[Podcast] 從邊緣挑戰雲上的人工智慧|特別來賓耐能智慧創辦人劉峻誠(公開)
https://apple.co/2WrmCgC
臉部辨識 — 30 億張照片的資料庫|執法機關熱烈採用|三條路線(會員限定)
https://bit.ly/3p791an
蛋白質的 50 年難題|AlphaFold 遙遙領先|諾貝爾獎在望(會員限定)
https://bit.ly/2LSzIBt
ai寫詩 在 開箱超強聊天AI ChatGPT!叫它寫文章、寫詩 - YouTube 的美食出口停車場
聽說有個超強 AI 任我玩?陸續製作的ChatGPT 影片:學生必看!超強 AI 幫助你寫作業!寫中英文作文、報告都難不倒它!老師們小心了! ... <看更多>
ai寫詩 在 臺灣詩學學刊編輯部- 解昆樺—我與數位AI詩人小冰:人寫的跟 ... 的美食出口停車場
解昆樺—我與數位AI詩人小冰:人寫的跟AI寫的詩有差嗎? 當AI不只會寫詩還得了文學獎,更出了詩集會掀起什麼樣的波瀾呢? 少女詩人小冰,讓小冰替你創作詩歌 ... ... <看更多>
ai寫詩 在 AI寫詩比人強? #shorts - YouTube 的美食出口停車場
完整影片請看▻ https://youtu.be/i6lxq_9lu6o# ai. ... <看更多>