📜 [專欄新文章] Uniswap v3 Features Explained in Depth
✍️ 田少谷 Shao
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
Once again the game-changing DEX 🦄 👑
Image source: https://uniswap.org/blog/uniswap-v3/
Outline
0. Intro1. Uniswap & AMM recap2. Ticks 3. Concentrated liquidity4. Range orders: reversible limit orders5. Impacts of v36. Conclusion
0. Intro
The announcement of Uniswap v3 is no doubt one of the most exciting news in the DeFi place recently 🔥🔥🔥
While most have talked about the impact v3 can potentially bring on the market, seldom explain the delicate implementation techniques to realize all those amazing features, such as concentrated liquidity, limit-order-like range orders, etc.
Since I’ve covered Uniswap v1 & v2 (if you happen to know Mandarin, here are v1 & v2), there’s no reason for me to not cover v3 as well ✅
Thus, this article aims to guide readers through Uniswap v3, based on their official whitepaper and examples made on the announcement page. However, one needs not to be an engineer, as not many codes are involved, nor a math major, as the math involved is definitely taught in your high school, to fully understand the following content 😊😊😊
If you really make it through but still don’t get shxt, feedbacks are welcomed! 🙏
There should be another article focusing on the codebase, so stay tuned and let’s get started with some background noise!
1. Uniswap & AMM recap
Before diving in, we have to first recap the uniqueness of Uniswap and compare it to traditional order book exchanges.
Uniswap v1 & v2 are a kind of AMMs (automated market marker) that follow the constant product equation x * y = k, with x & y stand for the amount of two tokens X and Y in a pool and k as a constant.
Comparing to order book exchanges, AMMs, such as the previous versions of Uniswap, offer quite a distinct user experience:
AMMs have pricing functions that offer the price for the two tokens, which make their users always price takers, while users of order book exchanges can be both makers or takers.
Uniswap as well as most AMMs have infinite liquidity¹, while order book exchanges don’t. The liquidity of Uniswap v1 & v2 is provided throughout the price range [0,∞]².
Uniswap as well as most AMMs have price slippage³ and it’s due to the pricing function, while there isn’t always price slippage on order book exchanges as long as an order is fulfilled within one tick.
In an order book, each price (whether in green or red) is a tick. Image source: https://ftx.com/trade/BTC-PERP
¹ though the price gets worse over time; AMM of constant sum such as mStable does not have infinite liquidity
² the range is in fact [-∞,∞], while a price in most cases won’t be negative
³ AMM of constant sum does not have price slippage
2. Tick
The whole innovation of Uniswap v3 starts from ticks.
For those unfamiliar with what is a tick:
Source: https://www.investopedia.com/terms/t/tick.asp
By slicing the price range [0,∞] into numerous granular ticks, trading on v3 is highly similar to trading on order book exchanges, with only three differences:
The price range of each tick is predefined by the system instead of being proposed by users.
Trades that happen within a tick still follows the pricing function of the AMM, while the equation has to be updated once the price crosses the tick.
Orders can be executed with any price within the price range, instead of being fulfilled at the same one price on order book exchanges.
With the tick design, Uniswap v3 possesses most of the merits of both AMM and an order book exchange! 💯💯💯
So, how is the price range of a tick decided?
This question is actually somewhat related to the tick explanation above: the minimum tick size for stocks trading above 1$ is one cent.
The underlying meaning of a tick size traditionally being one cent is that one cent (1% of 1$) is the basis point of price changes between ticks, ex: 1.02 — 1.01 = 0.1.
Uniswap v3 employs a similar idea: compared to the previous/next price, the price change should always be 0.01% = 1 basis point.
However, notice the difference is that in the traditional basis point, the price change is defined with subtraction, while here in Uniswap it’s division.
This is how price ranges of ticks are decided⁴:
Image source: https://uniswap.org/whitepaper-v3.pdf
With the above equation, the tick/price range can be recorded in the index form [i, i+1], instead of some crazy numbers such as 1.0001¹⁰⁰ = 1.0100496621.
As each price is the multiplication of 1.0001 of the previous price, the price change is always 1.0001 — 1 = 0.0001 = 0.01%.
For example, when i=1, p(1) = 1.0001; when i=2, p(2) = 1.00020001.
p(2) / p(1) = 1.00020001 / 1.0001 = 1.0001
See the connection between the traditional basis point 1 cent (=1% of 1$) and Uniswap v3’s basis point 0.01%?
Image source: https://tenor.com/view/coin-master-cool-gif-19748052
But sir, are prices really granular enough? There are many shitcoins with prices less than 0.000001$. Will such prices be covered as well?
Price range: max & min
To know if an extremely small price is covered or not, we have to figure out the max & min price range of v3 by looking into the spec: there is a int24 tick state variable in UniswapV3Pool.sol.
Image source: https://uniswap.org/whitepaper-v3.pdf
The reason for a signed integer int instead of an uint is that negative power represents prices less than 1 but greater than 0.
24 bits can cover the range between 1.0001 ^ (2²³ — 1) and 1.0001 ^ -(2)²³. Even Google cannot calculate such numbers, so allow me to offer smaller values to have a rough idea of the whole price range:
1.0001 ^ (2¹⁸) = 242,214,459,604.341
1.0001 ^ -(2¹⁷) = 0.000002031888943
I think it’s safe to say that with a int24 the range can cover > 99.99% of the prices of all assets in the universe 👌
⁴ For implementation concern, however, a square root is added to both sides of the equation.
How about finding out which tick does a price belong to?
Tick index from price
The answer to this question is rather easy, as we know that p(i) = 1.0001^i, simply takes a log with base 1.0001 on both sides of the equation⁴:
Image source: https://www.codecogs.com/latex/eqneditor.php
Let’s try this out, say we wanna find out the tick index of 1000000.
Image source: https://ncalculators.com/number-conversion/log-logarithm-calculator.htm
Now, 1.0001¹³⁸¹⁶² = 999,998.678087146. Voila!
⁵ This formula is also slightly modified to fit the real implementation usage.
3. Concentrated liquidity
Now that we know how ticks and price ranges are decided, let’s talk about how orders are executed in a tick, what is concentrated liquidity and how it enables v3 to compete with stablecoin-specialized DEXs (decentralized exchange), such as Curve, by improving the capital efficiency.
Concentrated liquidity means LPs (liquidity providers) can provide liquidity to any price range/tick at their wish, which causes the liquidity to be imbalanced in ticks.
As each tick has a different liquidity depth, the corresponding pricing function x * y = k also won’t be the same!
Each tick has its own liquidity depth. Image source: https://uniswap.org/blog/uniswap-v3/
Mmm… examples are always helpful for abstract descriptions 😂
Say the original pricing function is 100(x) * 1000(y) = 100000(k), with the price of X token 1000 / 100 = 10 and we’re now in the price range [9.08, 11.08].
If the liquidity of the price range [11.08, 13.08] is the same as [9.08, 11.08], we don’t have to modify the pricing function if the price goes from 10 to 11.08, which is the boundary between two ticks.
The price of X is 1052.63 / 95 = 11.08 when the equation is 1052.63 * 95 = 100000.
However, if the liquidity of the price range [11.08, 13.08] is two times that of the current range [9.08, 11.08], balances of x and y should be doubled, which makes the equation become 2105.26 * 220 = 400000, which is (1052.63 * 2) * (110 * 2) = (100000 * 2 * 2).
We can observe the following two points from the above example:
Trades always follow the pricing function x * y = k, while once the price crosses the current price range/tick, the liquidity/equation has to be updated.
√(x * y) = √k = L is how we represent the liquidity, as I say the liquidity of x * y = 400000 is two times the liquidity of x * y = 100000, as √(400000 / 100000) = 2.
What’s more, compared to liquidity on v1 & v2 is always spread across [0,∞], liquidity on v3 can be concentrated within certain price ranges and thus results in higher capital efficiency from traders’ swapping fees!
Let’s say if I provide liquidity in the range [1200, 2800], the capital efficiency will then be 4.24x higher than v2 with the range [0,∞] 😮😮😮 There’s a capital efficiency comparison calculator, make sure to try it out!
Image source: https://uniswap.org/blog/uniswap-v3/
It’s worth noticing that the concept of concentrated liquidity was proposed and already implemented by Kyper, prior to Uniswap, which is called Automated Price Reserve in their case.⁵
⁶ Thanks to Yenwen Feng for the information.
4. Range orders: reversible limit orders
As explained in the above section, LPs of v3 can provide liquidity to any price range/tick at their wish. Depending on the current price and the targeted price range, there are three scenarios:
current price < the targeted price range
current price > the targeted price range
current price belongs to the targeted price range
The first two scenarios are called range orders. They have unique characteristics and are essentially fee-earning reversible limit orders, which will be explained later.
The last case is the exact same liquidity providing mechanism as the previous versions: LPs provide liquidity in both tokens of the same value (= amount * price).
There’s also an identical product to the case: grid trading, a very powerful investment tool for a time of consolidation. Dunno what’s grid trading? Check out Binance’s explanation on this, as this topic won’t be covered!
In fact, LPs of Uniswap v1 & v2 are grid trading with a range of [0,∞] and the entry price as the baseline.
Range orders
To understand range orders, we’d have to first revisit how price is discovered on Uniswap with the equation x * y = k, for x & y stand for the amount of two tokens X and Y and k as a constant.
The price of X compared to Y is y / x, which means how many Y one can get for 1 unit of X, and vice versa the price of Y compared to X is x / y.
For the price of X to go up, y has to increase and x decrease.
With this pricing mechanism in mind, it’s example time!
Say an LP plans to place liquidity in the price range [15.625, 17.313], higher than the current price of X 10, when 100(x) * 1000(y) = 100000(k).
The price of X is 1250 / 80 = 15.625 when the equation is 80 * 1250 = 100000.
The price of X is 1315.789 / 76 = 17.313 when the equation is 76 * 1315.789 = 100000.
If now the price of X reaches 15.625, the only way for the price of X to go even higher is to further increase y and decrease x, which means exchanging a certain amount of X for Y.
Thus, to provide liquidity in the range [15.625, 17.313], an LP needs only to prepare 80 — 76 = 4 of X. If the price exceeds 17.313, all 4 X of the LP is swapped into 1315.789 — 1250 = 65.798 Y, and then the LP has nothing more to do with the pool, as his/her liquidity is drained.
What if the price stays in the range? It’s exactly what LPs would love to see, as they can earn swapping fees for all transactions in the range! Also, the balance of X will swing between [76, 80] and the balance of Y between [1250, 1315.789].
This might not be obvious, but the example above shows an interesting insight: if the liquidity of one token is provided, only when the token becomes more valuable will it be exchanged for the less valuable one.
…wut? 🤔
Remember that if 4 X is provided within [15.625, 17.313], only when the price of X goes up from 15.625 to 17.313 is 4 X gradually swapped into Y, the less valuable one!
What if the price of X drops back immediately after reaching 17.313? As X becomes less valuable, others are going to exchange Y for X.
The below image illustrates the scenario of DAI/USDC pair with a price range of [1.001, 1.002] well: the pool is always composed entirely of one token on both sides of the tick, while in the middle 1.001499⁶ is of both tokens.
Image source: https://uniswap.org/blog/uniswap-v3/
Similarly, to provide liquidity in a price range < current price, an LP has to prepare a certain amount of Y for others to exchange Y for X within the range.
To wrap up such an interesting feature, we know that:
Only one token is required for range orders.
Only when the current price is within the range of the range order can LP earn trading fees. This is the main reason why most people believe LPs of v3 have to monitor the price more actively to maximize their income, which also means that LPs of v3 have become arbitrageurs 🤯
I will be discussing more the impacts of v3 in 5. Impacts of v3.
⁷ 1.001499988 = √(1.0001 * 1.0002) is the geometric mean of 1.0001 and 1.0002. The implication is that the geometric mean of two prices is the average execution price within the range of the two prices.
Reversible limit orders
As the example in the last section demonstrates, if there is 4 X in range [15.625, 17.313], the 4 X will be completely converted into 65.798 Y when the price goes over 17.313.
We all know that a price can stay in a wide range such as [10, 11] for quite some time, while it’s unlikely so in a narrow range such as [15.625, 15.626].
Thus, if an LP provides liquidity in [15.625, 15.626], we can expect that once the price of X goes over 15.625 and immediately also 15.626, and does not drop back, all X are then forever converted into Y.
The concept of having a targeted price and the order will be executed after the price is crossed is exactly the concept of limit orders! The only difference is that if the range of a range order is not narrow enough, it’s highly possible that the conversion of tokens will be reverted once the price falls back to the range.
As price ranges follow the equation p(i) = 1.0001 ^ i, the range can be quite narrow and a range order can thus effectively serve as a limit order:
When i = 27490, 1.0001²⁷⁴⁹⁰ = 15.6248.⁸
When i = 27491, 1.0001²⁷⁴⁹¹ = 15.6264.⁸
A range of 0.0016 is not THAT narrow but can certainly satisfy most limit order use cases!
⁸ As mentioned previously in note #4, there is a square root in the equation of the price and index, thus the numbers here are for explantion only.
5. Impacts of v3
Higher capital efficiency, LPs become arbitrageurs… as v3 has made tons of radical changes, I’d like to summarize my personal takes of the impacts of v3:
Higher capital efficiency makes one of the most frequently considered indices in DeFi: TVL, total value locked, becomes less meaningful, as 1$ on Uniswap v3 might have the same effect as 100$ or even 2000$ on v2.
The ease of spot exchanging between spot exchanges used to be a huge advantage of spot markets over derivative markets. As LPs will take up the role of arbitrageurs and arbitraging is more likely to happen on v3 itself other than between DEXs, this gap is narrowed … to what extent? No idea though.
LP strategies and the aggregation of NFT of Uniswap v3 liquidity token are becoming the blue ocean for new DeFi startups: see Visor and Lixir. In fact, this might be the turning point for both DeFi and NFT: the two main reasons of blockchain going mainstream now come to the alignment of interest: solving the $$ problem 😏😏😏
In the right venue, which means a place where transaction fees are low enough, such as Optimism, we might see Algo trading firms coming in to share the market of designing LP strategies on Uniswap v3, as I believe Algo trading is way stronger than on-chain strategies or DAO voting to add liquidity that sort of thing.
After reading this article by Parsec.finance: The Dex to Rule Them All, I cannot help but wonder: maybe there is going to be centralized crypto exchanges adopting v3’s approach. The reason is that since orders of LPs in the same tick are executed pro-rata, the endless front-running speeding-competition issue in the Algo trading world, to some degree, is… solved? 🤔
Anyway, personal opinions can be biased and seriously wrong 🙈 I’m merely throwing out a sprat to catch a whale. Having a different voice? Leave your comment down below!
6. Conclusion
That was kinda tough, isn’t it? Glad you make it through here 🥂🥂🥂
There are actually many more details and also a huge section of Oracle yet to be covered. However, since this article is more about features and targeting normal DeFi users, I’ll leave those to the next one; hope there is one 😅
If you have any doubt or find any mistake, please feel free to reach out to me and I’d try to reply AFAP!
Stay tuned and in the meantime let’s wait and see how Uniswap v3 is again pioneering the innovation of DeFi 🌟
Uniswap v3 Features Explained in Depth was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
adopting meaning 在 AppWorks Facebook 的最佳貼文
Better business insights, process automation, and improved productivity were noted as the top 3 drivers for adopting AI in Southeast Asia, according to a recent survey conducted by IDC. The concurrent explosion in data and exponential increase in computing over the last decade has pushed AI to a critical tipping point. Companies and organizations are now able to leverage AI as not just a means to cut costs, but as a major competitive advantage that drives future revenue growth.
However, early adopters are the ones capitalizing most from the AI boom. By implementing AI early-on, companies such as Google, Amazon, Alibaba, and the like have been able to monopolize key talent pipelines and datasets that collectively erect a protective moat against late-movers.
That said, Southeast Asia is still a nascent battlefield, with AI adoption only standing at 14% out of all respondents surveyed. Meaning, now is the time to act. Though, it’s important to note that AI is not a magic wand--end-all, be-all solution to turnaround a business if you will. AI should be considered as a complementary tool to help people access and process information in a more efficient matter.
For the latest developments on AI in Greater Southeast Asia, be sure to follow AppWorks.
adopting meaning 在 玳瑚師父 Master Dai Hu Facebook 的精選貼文
【玳瑚師父客人見證】《非一般的餐會》
The Extraordinary Meal Session (English version below)
文 / 蔡豪華 Written by Louise Choy
首先,我要感謝玳瑚師父慈悲允許我出席這次寶貴的餐會。我本身對玄學有錯誤的觀念,選擇了隨波逐流,大家信什麼,我就跟著信。但那晚的餐會讓我茅塞頓開,像一道光明把我心中的疑团驅散,敞開了我的心房,去愛地球上的每一個生命,從细小的螞蟻到另一個人。我也學到我們的每一句話,每一個動作,都會產生相對的效果,影響著我們的健康。
據報導,癌症是我國的首號殺手,也是最耗金錢的病症,因為化療和電療都非常昂貴。我在大學時期曾經與癌症病患接觸,目睹了他們接受治療時的痛苦。他們經歷身心靈的巨變,讓我看了很心痛,聽到他們在化療時所發出的痛苦呻吟聲,我有時更會淚眼盈眶。我當時很想為他們做點什麼。這些病患和他們的家人還得面對金錢和精神上的壓力,苦不堪言。但僅管醫生盡了全力去拯救,也會有病人的病情毫无改善。
所以我會想,除了醫藥治療,我們還能如何幫助癌症病患或預防癌症呢?這些年我得到的答案,包括養成健康良好的生活習慣及基因遺傳。良好的生活素質能夠避免疾病,這是無可置疑的。可是這些就能保證我們不會患癌嗎?我有一位親戚,他平時不抽煙喝酒,天天跑步運動,飲食也非常健康,但最後還是患癌。他家族也沒有患癌的前科,你可以想像我們接獲這消息後的訝異。
其實要避免患癌,就必須把視野擴大去探討科學、人體運作及醫學之外的領域。參研居家風水及八字命理,和我們平日的作息,是確確實實能夠幫我們抗癌的。我就在昨晚找到了答案。請相信我,玳瑚師父所給予我們的教導,讓我思考了很久才能夠「消化」,內容浩瀚,但非常值得我們去學習和廣傳給那些有需要的人。
玳瑚師父不單單講解有關抗癌的訊息,也包括其它的疾病,如男性健康、女性健康、腦中風、心臟病、等等。讓我記憶最深刻的是,師父告訴我,我家裡隱藏了一位就連我都沒有發覺的「靈異朋友」。我向鄰居的傭人打聽這屋子的歷史後,才驚覺師父果真料事如神。
我照著師父的建議去做,就再也沒有在半夜三更聽到傢具移動和牆壁敲擊的聲音了。
我非常感激他給我指點迷津,也很慶幸能夠出席師父的餐會,有緣分認識這位謙虛和踏實的師父。
如果師父再辦另一個餐會,我鼓勵大家出席,並持著一個開通的思維以及尊敬的心。最後,希望大家獲益後,要將愛分享出去,給您的至親至愛,不認識的人,甚至自己的敵人。:)
……………………
First of all, I would like to thank Shifu Daihu for his kind and compassionate heart to allow me to attend such precious tea session with him. I am someone who does have misconception what chinese metaphysics is all about and go by the cookie cutter (meaning whatever the mass choose to follow to believe in, I will follow to believe). But after this tea session, it opens up my mind like a big parachute and shifting my heart to love all beings on earth e.g from tiniest ant to human and be mindful of our words and actions that can create cause and effect which eventually lead to health problems.
As mentioned, cancer is one of the common disease in Singapore and considered one of the most expensive disease to treat or cure e.g requires costly chemotherapy and radiotherapy. I have worked with cancer patients during university days and had witnessed cancer patients going through cancer treatments. The psychological and physical changes in a cancer patient is drastic and painful to watch. Sometimes, I teared silently to myself whenever I saw patient moaning and groaning in pain during chemotherapy. I told myself I wish I could do more for these people. Not forgetting, the financial and emotional stress put on their families can be too heavy and draining to bear. There also come to a point where doctors have exhausted their medical expertise and have done everything they could to save a cancer patient but still, there are no signs of cure or improvement.
So I wonder - Beside medical treatment, what else can be done to prevent or help a cancer patient? Well, the answer I have got over the years range from adopting a healthy lifestyle or genetics. Yes no doubt, a healthy lifestyle does play a part but what if someone who leads a healthy lifestyle, and still stricken with cancer? One of my relatives who doesn't smoke, jogs and exercises everyday. He eats healthily but in the end he was stricken with cancer. Also, his family has no history of cancer. Imagine seeing our shock expression when we came to know he has got cancer.
Well, the answer to prevent cancer goes beyond the surface of understanding of how our body works, scientific and medical way. But rather understanding of our home Fengshui, Bazi and our daily actions do play a part in cancer prevention. So last night, I found the answers and trust me, it took me awhile to digest the lessons given by Master Dai Hu, it was overwhelming but yet worthwhile for us to learn and pass the message to others who needs it.
Master Dai Hu not only covered the topics on cancer but also other health issues ranging from women and men health, stroke, heart disease and many more. One particular insight Master Daihu gave me was that something (a ghost) existed in my house which I wasn't aware of and he nailed it 100% with accuracy (I verified my house's history with my neighbour's maid) !
I followed the advice of Master Dai Hu and the mysterious noises from the movement of furniture and banging of the wall just disappeared without a trace.
I am so grateful that he pointed it out to me! I never regret coming down to attend his tea session and felt so blessed to know this down to earth and modest master.
Come and attend his next tea session if there is. Go to him with an open mind and with respect. Last but not the least, don't forget to spread love to your loved ones, strangers and even enemies once you leave the tea session. :)
www.masterdaihu.com/非一般的餐會/