漢聲廣播電台「fb新鮮事」節目
李基銘主持人
本集主題:「流量為王!迎接TikTok時代:百萬播主實戰上線,TikTok經營操作大公開」介紹
訪問作者:蕭聰傑 HUGO
內容簡介:
領先二步是先烈,領先一步是先驅!
站在全球短視頻龍頭的肩膀,一起在TikTok浪尖上再創事業新高峰。
自媒體當道,運用TikTok建立個人品牌,百萬粉絲不是夢。
《紐約時報》曾將此App 評為「可能是現存唯一真正令人愉悅的社交網路……,成功催生了大批影響力人物,這些用戶擁有數百萬粉絲,在青少年中有著家喻戶曉的地位」,其國際市場影響力已超越騰訊。
TikTok 因COVID-19 疫情,在全世界的居家令下,成為當時(2020 上半年)全球手機應用程式下載量第一名。
迎接5G 時代,短視頻思維當道
影片已經超越傳統娛樂媒體的角色,成為主流傳播,也成為現代年輕人的重要表達媒介。
透過自媒體經營個人品牌,有些人可以成功建立自己的專業形象,從而找到更多商業機會或職涯貴人,甚至有專業的自媒體經營者透過系統化的知識教學,在「數位學習」趨勢正興盛的現在成功變現!
官方認證銀牌播主的超導流教戰攻略
就算是新手上路,也能夠坐擁流量池的第一步!
每一個影片誕生的初期都在一個初級流量池內,影片會被推薦給那些最有可能對內容感興趣的用戶。然後,根據第一批用戶對影片產生的行為回饋,機器會生成對影片品質的評價,從而決定影片是否進入下一個流量池,並獲得更大的流量推薦。
對TikTok來說,點讚量、評論量、轉發量、完播率是爆紅關鍵!
數據思維:熱搜無權限,成功無上限
數據時代下,經營頻道都應講究「成效」,所有影片都應能獲取數據資料,但真的有正確「解讀」數據的人少之又少,甚至連「累積數據」的方式都是錯誤的。
換句話說,你正拿著錯誤的數據得到錯誤的結論,並執行錯誤的創作策略。本篇告訴你,在TikTok裡該如何取得數據,如何因應數據思考策略。
看懂數據,才能把流量變現金!
作者簡介:蕭聰傑 HUGO
◎學歷:英國財管碩士
◎專業經歷
勁牛學院聯合創辦人
TikTok官方認證創作者
中華網紅自媒體發展協會常務理事
麥肯錫外聘稽核
美爽爽化妝品財務長
出版社財務顧問、理財顧問
ERP導入系統整合
◎榮譽事蹟
TikTok一個月百萬流量頻道:「財富小百科」
2020年2月26日開始TikTok 創作,在摸索中成長;開始時以圖文加上音樂的方式呈現視頻,提供會計、財務等專業知識予用戶,幸運地在同年4 月即獲得TikTok 邀約申請銀牌創作者,5 個工作天即入選為銀牌創作者。
2020 年4 月成為第102 個官方核准的銀牌創作者,到2021 年3 月將近一年的時間,只有133 個TikTok 官方核准的銀牌以上創作者;增加的21 個創作者中,另有5 個官方核准創作者是由我協助達成。
2020 年6 月,開始陷入和其他創作者一樣的困境,因為持續付出並沒有得到相對的回報;TikTok 也沒有任何獲利的管道,不少優質的官方認證創作者因為無法獲利而退出TikTok。
由於會計財務出身,對數字的敏感度極高,開始研究中國大陸抖音,蒐集很多數據,發現TikTok 簡直是當年Facebook 的翻版,甚至於未來發展更甚於當年的Facebook;同年,除了輔導4 位創作者達到銀牌認證,也開始將所學建立一套SOP。
創作者想達到官方認證並不難,只要知道方法,再來就是堅持信念持續創作,貢獻價值給平台及用戶,時間會證實一切。
作者粉絲頁: 勁牛學院⎪網路自媒體趨勢工廠
出版社粉絲頁: 博思智庫Broad Think Tank
👇YouTube頻道,可以收看👇
https://goo.gl/IQXvzd
👇podcast平台,可以收聽👇
SoundOn https://bit.ly/3oXSlmF
Spotify https://spoti.fi/2TXxH7V
Apple https://apple.co/2I7NYVc
Google https://bit.ly/2GykvmH
KKBOX https://bit.ly/2JlI3wC
Firstory https://bit.ly/3lCHDPi
👇請支持六個粉絲頁👇
李基銘主持人粉絲頁:https://www.facebook.com/voh.lee
李基銘新聞報粉絲頁:https://www.facebook.com/voh.twnews
李基銘的影音頻道粉絲頁:https://www.facebook.com/voh.video
漢聲廣播電台「fb新鮮事」節目粉絲頁:https://www.facebook.com/voh.vhbn
漢聲廣播電台「快樂玩童軍」節目粉絲頁:https://www.facebook.com/voh.scout
漢聲廣播電台「生活有意思」節目粉絲頁:https://www.facebook.com/voh.life
同時也有2部Youtube影片,追蹤數超過1,790的網紅李基銘漢聲廣播電台-節目主持人-影音頻道,也在其Youtube影片中提到,本集主題:「流量為王!迎接TikTok時代:百萬播主實戰上線,TikTok經營操作大公開」介紹 訪問作者:蕭聰傑 HUGO 內容簡介: 領先二步是先烈,領先一步是先驅! 站在全球短視頻龍頭的肩膀,一起在TikTok浪尖上再創事業新高峰。 自媒體當道,運用TikTok建立個人品牌,...
高智敏稽核 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
銀行如何提供超級個人化服務?百人數據團隊靠AI打造中信腦
為了顧及全產品、全客群、全通路、全覆蓋,中國信託採取的對策是走入AI與大數據,更為發展AI應用訂下3大KPI,來掌握研發資源的最適化;今年,中信更成立數據治理委員會,希望將數據治理走向更全行化的關鍵議題
文/李靜宜 | 2021-06-10發表
「透過科技力,來創造競爭力。」中國信託銀行數據暨科技研發處處長王俊權,用一句話點出中國信託大力發展AI與大數據的戰略核心。
3年多前,中國信託定調以AI與大數據作為主要發展方向,並成立了數據研發中心,要用AI來加值業務場景的服務與產品。設立初期僅有一人,到現在已擴大為百人團隊,更在2020年初正式提升為數據暨科技研發處。王俊權正是該團隊的一號員工,更是中國信託內部大力推動AI與大數據的關鍵人物。
中國信託的經營策略是,顧及全產品、全客群、全通路、全覆蓋。而為了守住既有的優勢,中信採取的對策是走入AI與大數據,來作為轉型的利器。不只要轉型,王俊權表示,中信更希望透過AI與大數據,孵化出不同於以往的經營模式。
「CTBC+AI」是中國信託發展AI的大方向,在各業務線上,都能將既有的經營方法加上AI,來提升效率與效能,更要以這樣的科技力創造競爭力。更以優化、平臺、全面、轉型、顛覆這5大階段任務,往下推動AI。
王俊權解釋,中信的策略是,從最小且最有把握的項目開始,所以,透過AI來優化既有的經營方式,是中信切入AI的第一項任務。運用AI優化的專案成功後,下一步,中信就能將AI技術進一步平臺化;有了平臺之後,就能將AI技術全面導入到銀行。
走過了優化階段、平臺階段到全面發展階段,AI已經落地到中信的金融場景,也陸續有了一些階段性成果。王俊權表示,中信現在聚焦「轉型」與「顛覆」,希望透過AI幫助組織轉型,最終期待是要用AI提出顛覆的想法,創造新的經營模式,他透露,目前已有幾個專案正在進行中。
依循著CTBC+AI這項大主軸,中國信託打造了「中信腦」,定調3條研發路線: 電腦視覺、自然語言處理(NLP)、機器思考,也成立了3大實驗室,聚焦研發6大AI應用核心,包括了精準行銷、市場預測引擎、文字與文件辨識應用、人臉與物件辨識應用、機器閱讀到機器對話。從應用場景來看,則鎖定營銷經營、流程優化、風險控管這3項。累計至今,中信在業務單位落地的AI專案超過了20個。
第一類應用場景的AI,中信稱為「營銷經營+AI」,囊括個人化推薦、需求預測,目的是協助增加收益,並提升客戶滿意度、客戶資產、新申購產品數等。王俊權提到,像是推薦引擎專案,中信金控整體客戶數有1,100多萬戶,產品與通路又多,需要透過AI推薦引擎來實現精準行銷,預測顧客未來的金融需求,才能進一步推薦。中信也將這類預測技術,應用到金融商品的預測,比如房價預測、股市預測、匯率預測等。
「流程優化+AI」則是中信第二大類應用場景,包含法金作業流程、客戶申請流程、線上作業流程,希望用來協助內部提升作業效率,來減少作業成本,最終目的也同樣要能夠提升客戶滿意度。 目前,中信內部有多項端對端的流程數位化專案,像是個金、法金、AML(反洗錢)、HR等業務,都有導入AI來優化既有流程。
最後一類場景的應用是「風險控管+AI」,則應用在AML作業、偽冒偵測、稽核,來改善內部作業效率,減少風險的損失。比如,王俊權提到,前年底,中信銀行上線了一套用自然語言處理技術分析負面新聞的平臺,這個AI反洗錢專案的成果,後來更從臺灣擴大應用到7個國家的海外分行。
王俊權表示,3大實驗室所負責的6大AI核心,就是沿著這3大類應用分頭進行,其中,因為銀行面對數位化的壓力較大,所以,又以銀行為應用主力,再逐漸將AI技術擴大到金控旗下子公司,如投信、台灣人壽、中國信託資融等。
自行培養AI研發能力,更訂定3大AI管理KPI
AI發展策略上,中國信託除了自主研發,也會與廠商協作。不過,這兩種策略該如何拿捏,中信內部也走過一段辯論的路。王俊權表示,最後的判斷依據是,「金融業需要的核心能力,中信會投入有限的研發資源。若不是中信認為的核心能力,則盡可能用市場上的解決方案,來加快回應市場的時間。」
舉例來說,銀行業使用分析模型並非新鮮事,AI技術與傳統統計回歸最大的不同是,能夠處理大量非結構數據,像是人臉、電文等資料,可是,這些數據機敏性較高,如果銀行不能自行掌握技術,而需委外,王俊權認為,第一個問題就是,銀行創新的保密性較弱,再者,廠商進入銀行接觸到如此多的機密性資料,有時也有法遵問題。
尤其,金融業對個資的管制嚴格,非結構化資料很難離開金融業,但是,在臺灣,許多AI技術原廠來自海外,對於銀行來說,整體應用或導入的彈性都相對較低,這些都是中國信託選擇培養自家AI研發能量的關鍵因素。
中信在AI應用發展策略,更訂出3大關鍵績效指摽(KPI),作為研發資源最適化的參考。王俊權表示:「對資源有限,需求無限的單位而言,研發的管理是一大關鍵。」首先,中信不會輕易增加AI生產線,因每開一條生產線就會涉及維運與資源分散的議題。所以,「AI生產線的管理」是第一項KPI。
「AI研發資源調度的管理」是第二項KPI。王俊權提到,資源有限狀況下,應該分配多少資源,投入短期的落地變現,還是長期的亮點顛覆,「是一種決策的藝術。」過去,中信希望AI可以迅速擴大到各單位,所以,王俊權採取80/20法則,將80%的資源用在短期落地變現,讓大家有感,保留20%在真正創新的研發。不過,他表示,這個比例每年或每季會進行調整,要讓研發資源投入到需要的地方。
第三項KPI則是「核心複用的比率」,也就是同一項核心技術盡可能重複利用的比率。王俊權要求研發團隊,每條AI生產線至少要有3個落地應用。目前,中國信託共有6條AI生產線,以及20幾個AI落地應用的專案,他提到:「平均每條AI生產線,有3~4個核心複用。」未來,更希望將每個AI核心,擴大到金控內各個應用,所以,要盡可能提升核心的複用,他對團隊的期待是,能提高到兩位數的複用率。
他進一步舉例,3年前,中信導入工研院智能文審技術,來辨識客戶申辦信用卡、貸款所需檢附的財力證明,像是存摺、扣繳憑單等金融常用的固定格式文件。去年,中信將文字辨識應用,複用到分行的場景,上線AI票券辨識服務,在審票機中加入AI、OCR技術來辨識支票,來減少櫃員人工審票與顧客等待的時間,及提升作業人員登打的產能。
目前,中信已做到一張支票上的7個要件,包括到期日、抬頭人、金額、禁止背書轉、發票章讓章或手寫、背書、帳號,都能夠用AI辨識。王俊權提到,中信將自行研發的印刷體的文字辨識核心、手寫英數的AI辨識核心、文印鑑辨識技術,通通導入支票辨識上,「這就是一種AI核心的複用」。此外,為了持續優化辨識正確率,中信更導入AI反饋機制,內部自己發展出標記功能,來改善標記效率,長期目標是達到9成的辨識正確率。今年,中信預計將該AI應用擴大到22家分行。
中信還有另一項AI核心應用是人臉與物件辨識應用,王俊權坦言:「人臉辨識技術,對於組織的轉型與顛覆是亮點有餘,可是力道不足。」不過,若能結合防偽能力及數位流程,可能會創造出藍海的新應用。中信正在思考,如何運用人臉辨識、活體辨識、微表情辨識、情緒辨識等AI核心,交錯組合來打造遠端核身相關應用。
金融業需緊跟科技的腳步,轉變為自身的競爭力,才能在指數型成長的趨勢下,站上領先地位。AI與大數據,正是下一波競爭力的最大利器。─── 中國信託銀行數據暨科技研發處處長 王俊權
推動超級個人化服務,中信靠大數據建立5大行銷策略
「中信銀行每個月有1.5億筆的金融數據,1.9億筆的非金融數據。更可觀的是,疫情期間,顧客更加喜歡使用數位服務,每月高達2億筆的顧客數位數據。」王俊權首度揭露了中信內部統計的海量數據。不只如此,中信銀行1年與顧客會有20億次的行銷溝通,顧客造訪行動銀行、網路銀行或到行銷網頁觀望的次數,更是高達16億次。
「中國信託的數據含金量很高,因此,全都要採集起來,作為銀行KYC的關鍵第一步。」他提到,光在2017年到2018年這段期間,中信內部就採集了大量數據,來建立360度客戶全景標籤。即便,當時各個單位已有自己的全景標籤,中信仍認為要有一個可以全行共用的主數據庫。
有數據來了解顧客,銀行就能出手,中信的策略是以數據掌握顧客人生不同階段需求,提供超級個人化服務。王俊權表示,中信策略是運用AI與大數據,透過個人化溝通方式,來提升顧客的成交機會。中信更先將這種作法,落地到銀行的「艱困區」,若在艱困區測試後有成效,再轉移到「黃金區」主戰場。「一方面不會影響到既有的業務動能,另一方面團隊也會比較有信心。」
在推動超級個人化服務,中信採取了5大行銷策略,並各自搭配合適的AI技術。第一項策略是使用最適合的通路對不同顧客溝通;第二項是尋找顧客有興趣的話題來互動,王俊權透露,今年底將從人工轉為全自動化,用AI生成銀行與顧客行銷的文案。
選擇對的時間,則是第三項策略,比如,當外幣跌到一定數值時,跟該名顧客歷史申購外幣的成本有競爭性,就能在此時發送推薦資訊給顧客。
第四項策略則是打造貼合顧客需求的產品,他提到,中信已有不同產品的預測模型,能預測未來3個月或1周後,該名顧客可能需要的產品。可供業務單位、EDM數位行銷,來聚焦其中高成交率的顧客。最後一項策略是對的活動,即便是賣同一項產品,不同活動的優惠或行銷設計都要不一樣。
王俊權認為,不僅不要過度叨擾顧客,更希望提供一次就能擊中顧客的服務。甚至,目標是做到自動化行銷,他透露,目前正在建置平臺的階段,除了要能自動採集數據,更要自動反應顧客下一步的預測,讓銀行出手可以更快,或盡可能減少PM或行銷出手時會遇上的人工斷點,甚至,讓每次出手後的反饋可以更為即時,來推動多波段行銷。
成立數據治理委員會,優先梳理2類數據
「數據治理是比下水道還要更下水道的底層工程。」特別對於大型金融機構來說,海量的數據勢必要有與過往不同的梳理方式,王俊權如此說著。
因此,今年中信銀行成立了數據治理委員會,由總經理親自主持,各個業務單位主管都參與,「希望將數據治理走向更全行化的關鍵議題。」他坦言,今年是試行階段,但中信已經注意到這個趨勢,而且必須往這方向走。
中信在數據治理特別強調「以用為治」,去年,更研究了全世界數據治理做得較好的企業,比如,數據治理發展超過20年的華為。王俊權坦言:「對中信而言,數據治理既然是一場長期抗戰,就必須明確為何而戰。」
由於資源有限,中信在數據治理的戰略,優先從兩類業務來推動,第一類是不能犯的錯,這類資料的處理一旦犯錯,銀行容忍度很低,如監理報送這類數據就需要優先梳理。另外一類是業務效益較大者,王俊權表示,若沒有好的數據治理標準,業務效益很難有長期的呈現。這是中信今年訂下數據治理的方向,也希望從小開始,慢慢擴大到全行。
經理人小檔案
王俊權
中國信託銀行數據暨科技研發處處長
學歷:臺灣大學國際企業研究所商學碩士
經歷:早年在美國矽谷的科技公司做美股分析,回臺後陸續待過4家銀行,主要負責風險管理;2005年加入中國信託銀行擔任全球個金風險管理處處長,2018年兼任數據研發中心最高主管;現為中信銀行數據暨科技研發處處長,兼任中信金控數據主管
附圖:中國信託銀行數據暨科技研發處處長 王俊權 (攝影/洪政偉)
資料來源:https://www.ithome.com.tw/people/144842?fbclid=IwAR0XaBPczoiqTWTEQH8qHfNDbmyyTpA43Akd2gYWhsBbh0oIbWsBNWdF4Fk
高智敏稽核 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
AI 助陣醫學、防疫,個人隱私難兩全?
2021/06/09 研之有物
規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。
評論
本篇來自合作媒體研之有物,作者周玉文、黃曉君,INSIDE 經授權轉載。
AI 醫療、科技防疫的人權爭議
健康大數據、人工智慧(AI)已經成為醫療研發的新聖杯,新冠肺炎(COVID-19)更將 AI 技術推上防疫舞臺,各國紛紛串聯大數據監控足跡或採用電子圍籬。但當科技防疫介入公衛醫療,我們是否在不知不覺中讓渡了個人隱私?
中研院歐美研究所副研究員何之行認為,規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。
「天網」恢恢,公衛醫療的新利器
自 2020 年新冠疫情大爆發,全世界為了因應危機展開大規模協作,從即時統計看板、預測病毒蛋白質結構、電子監控等,大數據與 AI 技術不約而同派上用場。但當數位科技介入公共衛生與醫療健康體系,也引發人權隱私的兩難爭議。
2020 年的最後一夜,臺灣再次出現本土案例。中央流行疫情指揮中心警告,居家隔離、居家檢疫、自主健康管理的民眾,都不應參加大型跨年活動。而且,千萬別心存僥倖,因為「天網」恢恢,「我們能找得到您」!有天網之稱的電子圍籬 2.0 出手,許多人拍手叫好,但也挑起國家進行隱私監控的敏感神經。
隱私爭議不只在防疫戰場,另一個例子是近年正夯的精準醫療。2021 年 1 月,《經濟學人》(The Economist)發布亞太區「個人化精準醫療發展指標」(Personalised-health-index)。臺灣勇奪亞軍,主要歸功於健全的健保、癌症資料庫及尖端資訊科技。
國際按讚,國內反應卻很兩極。早前曾有人質疑「個人生物資料」的隱私保障,擔憂是否會成為藥廠大數據;但另一方面,部分醫療研究者卻埋怨《個人資料保護法》(簡稱《個資法》)很嚴、很卡,大大阻擋了醫學研發。為何國內反應如此分歧?
中研院歐美所副研究員何之行認為,原因之一是,
《個資法》早在 2012 年就實施,跑在 AI 時代之前,若僅僅仰賴現行規範,對於新興科技的因應恐怕不合時宜。
健保資料庫爭議:誰能再利用我們的病歷資料?
來看看曾喧騰一時的「健保資料庫訴訟案」。
2012 年,臺灣人權促進會與民間團體提出行政訴訟,質疑政府沒有取得人民同意、缺少法律授權,逕自將健保資料提供給醫療研究單位。這意味,一般人完全不知道自己的病例被加值運用,侵害了資訊自主權。案件雖在 2017 年敗訴,但已進入大法官釋憲。
民間團體批評,根據《個資法》,如果是原始蒐集目的之外的再利用,應該取得當事人同意。而健保資料原初蒐集是為了稽核保費,並非是提供醫學研究。
但支持者則認為,健保資料庫是珍貴的健康大數據,若能串接提供學術與醫療研究,更符合公共利益。此外,如果過往的數據資料都必須重新尋求全國人民再同意,相關研發恐怕得被迫踩剎車。
種種爭議,讓醫學研究和資訊隱私之間的紅線,顯得模糊而舉棋不定。何之行指出,「個人權利」與「公共利益」之間的權衡拉鋸,不僅是長久以來政治哲學家所關心的課題,也反映了現代公共衛生倫理思辨的核心。
我們有權拒絕提供資料給醫療研究嗎?當精準醫療的腳步飛也似向前奔去,我們要如何推進醫學科技,又不棄守個人的隱私權利呢?
「精準醫療」與「精準健康」是近年醫學發展的重要趨勢,透過健康大數據來評估個人健康狀況,對症下藥。但健康資料涉及個人隱私,如何兼顧隱私與自主權,成為另一重要議題。
去識別化爭點:個資應該「馬賽克」到什麼程度?
何之行認為,「健保資料庫爭議」短期可以從幾項原則著手,確立資料使用標準,包括:允許退出權(opt-out)、定義去識別化(de-identification)。
「去識別化」是一道安全防護措施。簡單來說:讓資料不會連結、辨識出背後真正的那個人。何之行特別分享 Google 旗下人工智慧研發公司 DeepMind 的慘痛教訓。
2017 年,DeepMind 與英國皇家醫院(Royal Free)的協定曝光,DeepMind 從後者取得 160 萬筆病歷資料,用來研發診斷急性腎衰竭的健康 APP。聽來立意良善的計畫,卻引發軒然大波。原因是,資料分享不僅未取得病患同意,也完全沒有將資料去識別化,每個人的病史、用藥、就醫隱私全被看光光!這起爭議無疑是一大教訓,重創英國社會對於開放資料的信任。
回到臺灣脈絡。去識別化指的是以代碼、匿名、隱藏部分個資或其他方式,無從辨識特定個人。但要達到什麼樣的隱匿保護程度,才算是無從識別特定個人?
何之行指出,個資法中的定義不甚清楚,混用匿名化(anonymous)、假名化(pseudonymised)、去連結(delink)等規範程度不一的概念。臺灣也沒有明確定義去識別化標準,成為爭點。
現行法令留下了模糊空間,那麼他山之石是否能提供參考?
以美國《健康照護可攜法案》(HIPAA)為例,法案訂出了去除 18 項個人識別碼,作為去識別化的基準;歐盟《一般資料保護規則》則直接說明,假名化的個資仍然是個人資料。
退出權:保留人民 say NO 的權利
另一個消解爭議的方向是:允許退出權,讓個人保有退出資料庫的權利。即使健保資料並沒有取得民眾事前(opt-in)的同意,但仍可以提供事後的退出選項,民眾便有機會決定,是否提供健康資料做學術研究或商業運用。
何之行再舉英國國民健保署 NHS 做法為例:英國民眾有兩階段選擇退出中央資料庫 (NHS Digital)的機會,一是在一開始就拒絕家庭醫師將自己的醫病資料上傳到 NHS Digital,二是資料上傳後,仍然可以在資料分享給第三方使用時說不。畢竟有人願意為公益、學術目的提供個人健康數據,對商業用途敬謝不敏;也有人覺得只要無法辨識個人即可。
近年,英國政府很努力和大眾溝通,希望民眾認知到資料分享的共善,也說明退出所帶來的社會成本,鼓勵人們留在資料庫內,享受精準醫療帶給個人的好處。可以看到英國政府藉由公眾溝通,努力建立社會信任。
參照英國經驗,目前選擇退出的比率約為 2.6%。保留民眾某種程度的退出權,但善盡公眾溝通,應是平衡集體利益與個人隱私的一種做法。
歐盟 GDPR 個資保護的四大原則
健保資料庫只是案例之一,當 AI 成為大數據浪潮下的加速器,最周全之策仍然是針對 AI 時代的資料運用另立規範。 歐盟 2018 年實施的《一般資料保護規則》(General Data Protection Regulation,以下簡稱 GDPR),便是大數據 AI 時代個資保護的重要指標。
因應 AI、大數據時代的變化,歐盟在 2016 年通過 GDPR,2018 年正式上路,被稱為「史上最嚴格的個資保護法」。包括行動裝置 ID、宗教、生物特徵、性傾向都列入被保護的個人資料範疇。
歐盟在法令制定階段已將 AI 運用納入考量,設定出個資保護四大原則:目的特定原則、資料最小化、透明性與課責性原則。
其中,「目的特定」與「資料最小化」都是要求資料的蒐集、處理、利用,應在特定目的的必要範圍內,也就是只提供「絕對必要」的資料。
然而,這與大數據運用需仰賴大量資料的特質,明顯衝突!
大數據分析的過程,往往會大幅、甚至沒有「特定目的」的廣蒐資料;資料分析後的應用範圍,也可能超出原本設定的目標。因此,如何具體界定「特定目的」以及後續利用的「兼容性判斷」,便相當重要。這也突顯出「透明性」原則強調的自我揭露(self-disclosure)義務。當蒐集方成為主要的資料控制者,就有義務更進一步解釋那些仰賴純粹自動化的決策,究竟是如何形成的。
「透明性原則的用意是為了建立信任感。」何之行補充。她舉例,中國阿里巴巴集團旗下的芝麻信用,將演算法自動化決策的應用發揮得淋漓盡致,就連歐盟發放申根簽證都會參考。然而,所有被納入評分系統的人民,卻無從得知這個龐大的演算法系統如何運作,也無法知道為何自己的信用評等如此。
芝麻信用表示,系統會依照身分特質、信用歷史、人脈關係、行為偏好、履約能力等五類資料,進行每個人的信用評分,分數介於 350-950。看似為電商系統的信用評等,實則影響個人信貸、租車、訂房、簽證,甚至是求職。
這同時涉及「課責性」(accountability)原則 ── 出了問題,可以找誰負責。以醫療場域來講,無論診斷過程中動用了多少 AI 工具作為輔助,最終仍須仰賴真人醫師做最後的專業判斷,這不僅是尊重醫病關係,也是避免病患求助無門的問責體現。
科技防疫:無所遁形的日常與數位足跡
當新冠疫情爆發,全球人心惶惶、對未知病毒充滿恐懼不安,科技防疫一躍成為國家利器。但公共衛生與人權隱私的論辯,也再次浮上檯面。
2020 年 4 月,挪威的國家公共衛生機構推出一款接觸追蹤軟體,能監控足跡、提出曾接觸確診者的示警。但兩個月後,這款挪威版的「社交距離 APP」卻遭到挪威個資主管機關(NDPA)宣告禁用!
挪威開發了「Smittestopp」,可透過 GPS 與藍牙定位來追蹤用戶足跡,提出與感染者曾接觸過的示警,定位資訊也會上傳到中央伺服器儲存。然而,挪威資料保護主管機關(NDPA)宣告,程式對個人隱私造成不必要的侵害,政府應停止使用並刪除資料。
為何挪威資料保護機關會做出這個決定?大體來說,仍與歐盟 GDPR 四大原則有關。
首先,NDPA 認為挪威政府沒有善盡公眾溝通責任,目的不清。人民不知道這款 APP 是為了疫調?或者為研究分析而持續蒐集資料?而且,上傳的資料包含非確診者個案,違反了特定目的與資料最小蒐集原則。
此外,即便為了防疫,政府也應該採用更小侵害的手段(如:僅從藍牙確認距離資訊),而不是直接由 GPS 掌控個人定位軌跡,這可能造成國家全面監控個人行蹤的風險。
最後 NDPA 認為,蒐集足跡資料原初是為了即時防疫,但當資料被轉作後續的研究分析,政府應主動說明為什麼資料可以被二次利用?又將如何去識別化,以確保個資安全?
換言之,面對疫情的高度挑戰,挪威個資保護機關仍然認為若沒有足夠的必要性,不應輕易打開潘朵拉的盒子,國家採用「Smittestopp」這款接觸追蹤軟體,有違反比例原則之虞。
「有效的疫情控制,並不代表必然需要在隱私和個資保護上讓步。反而當決策者以防疫之名進行科技監控,一個數位監控國家的誕生,所妥協的將會是成熟公民社會所賴以維繫的公眾信任與共善。」何之行進一步分析:
數位監控所帶來的威脅,並不僅只於表象上對於個人隱私的侵害,更深層的危機在於,掌握「數位足跡」(digital footprint) 後對於特定當事人的描繪與剖析。
當監控者透過長時間、多方面的資訊蒐集,對於個人的「深描與剖繪」(profiling)遠遠超過想像──任何人的移動軌跡、生活習慣、興趣偏好、人脈網絡、政治傾向,都可能全面被掌握!
AI 時代需要新法規與管理者
不論是醫藥研發或疫情防控,數位監控已成為當代社會的新挑戰。參照各國科技防疫的爭論、歐盟 GDPR 規範,何之行認為,除了一套 AI 時代的個資保護規範,實踐層面上歐盟也有值得學習之處。
例如,對隱私風險的脈絡化評估、將隱私預先納入產品或服務的設計理念(privacy by design),「未來照護機器人可能走入家家戶戶,我們卻常忽略機器人 24 小時都在蒐集個資,隱私保護在產品設計的最初階段就要納入考量。」
另外最關鍵的是:設置獨立的個資監管機構,也就是所謂的資料保護官(data protection officer,DPO),專責監控公、私營部門是否遵循法規。直白地說,就是「個資警察局」。何之行比喻,
如果家中遭竊,我們會向警察局報案,但現況是「個資的侵害不知道可以找誰」。財稅資料歸財政部管,健康資料歸衛福部管,界定不清楚的就變成三不管地帶。
綜觀臺灣現狀,她一語點出問題:「我們不是沒有法規,只是現有的法令不完備,也已不合時宜。」
過往許多人擔心,「個資保護」與「科技創新」是兩難悖論,但何之行強調法令規範不是絆腳石。路開好、交通號誌與指引完善,車才可能跑得快。「GDPR 非常嚴格,但它並沒有阻礙科學研究,仍然允許了科學例外條款的空間。」
「資料是新石油」(data is the new oil),臺灣擁有世界數一數二最完整的健康資料,唯有完善明確的法規範才能減少疑慮,找出資料二次利用與科技創新的平衡點,也建立對於資料二次利用的社會信任。
資料來源:https://www.inside.com.tw/article/23814-ai-privacy-medical?fbclid=IwAR0ATcNjDPwTsZ4lkQpYjvys3NcXpDaqsmE_gELBl_UNu4FcAjBlscxMwss
高智敏稽核 在 李基銘漢聲廣播電台-節目主持人-影音頻道 Youtube 的最讚貼文
本集主題:「流量為王!迎接TikTok時代:百萬播主實戰上線,TikTok經營操作大公開」介紹
訪問作者:蕭聰傑 HUGO
內容簡介:
領先二步是先烈,領先一步是先驅!
站在全球短視頻龍頭的肩膀,一起在TikTok浪尖上再創事業新高峰。
自媒體當道,運用TikTok建立個人品牌,百萬粉絲不是夢。
《紐約時報》曾將此App 評為「可能是現存唯一真正令人愉悅的社交網路……,成功催生了大批影響力人物,這些用戶擁有數百萬粉絲,在青少年中有著家喻戶曉的地位」,其國際市場影響力已超越騰訊。
TikTok 因COVID-19 疫情,在全世界的居家令下,成為當時(2020 上半年)全球手機應用程式下載量第一名。
迎接5G 時代,短視頻思維當道
影片已經超越傳統娛樂媒體的角色,成為主流傳播,也成為現代年輕人的重要表達媒介。
透過自媒體經營個人品牌,有些人可以成功建立自己的專業形象,從而找到更多商業機會或職涯貴人,甚至有專業的自媒體經營者透過系統化的知識教學,在「數位學習」趨勢正興盛的現在成功變現!
官方認證銀牌播主的超導流教戰攻略
就算是新手上路,也能夠坐擁流量池的第一步!
每一個影片誕生的初期都在一個初級流量池內,影片會被推薦給那些最有可能對內容感興趣的用戶。然後,根據第一批用戶對影片產生的行為回饋,機器會生成對影片品質的評價,從而決定影片是否進入下一個流量池,並獲得更大的流量推薦。
對TikTok來說,點讚量、評論量、轉發量、完播率是爆紅關鍵!
數據思維:熱搜無權限,成功無上限
數據時代下,經營頻道都應講究「成效」,所有影片都應能獲取數據資料,但真的有正確「解讀」數據的人少之又少,甚至連「累積數據」的方式都是錯誤的。
換句話說,你正拿著錯誤的數據得到錯誤的結論,並執行錯誤的創作策略。本篇告訴你,在TikTok裡該如何取得數據,如何因應數據思考策略。
看懂數據,才能把流量變現金!
作者簡介:蕭聰傑 HUGO
◎學歷:英國財管碩士
◎專業經歷
勁牛學院聯合創辦人
TikTok官方認證創作者
中華網紅自媒體發展協會常務理事
麥肯錫外聘稽核
美爽爽化妝品財務長
出版社財務顧問、理財顧問
ERP導入系統整合
◎榮譽事蹟
TikTok一個月百萬流量頻道:「財富小百科」
2020年2月26日開始TikTok 創作,在摸索中成長;開始時以圖文加上音樂的方式呈現視頻,提供會計、財務等專業知識予用戶,幸運地在同年4 月即獲得TikTok 邀約申請銀牌創作者,5 個工作天即入選為銀牌創作者。
2020 年4 月成為第102 個官方核准的銀牌創作者,到2021 年3 月將近一年的時間,只有133 個TikTok 官方核准的銀牌以上創作者;增加的21 個創作者中,另有5 個官方核准創作者是由我協助達成。
2020 年6 月,開始陷入和其他創作者一樣的困境,因為持續付出並沒有得到相對的回報;TikTok 也沒有任何獲利的管道,不少優質的官方認證創作者因為無法獲利而退出TikTok。
由於會計財務出身,對數字的敏感度極高,開始研究中國大陸抖音,蒐集很多數據,發現TikTok 簡直是當年Facebook 的翻版,甚至於未來發展更甚於當年的Facebook;同年,除了輔導4 位創作者達到銀牌認證,也開始將所學建立一套SOP。
創作者想達到官方認證並不難,只要知道方法,再來就是堅持信念持續創作,貢獻價值給平台及用戶,時間會證實一切。
作者粉絲頁: 勁牛學院⎪網路自媒體趨勢工廠
出版社粉絲頁: 博思智庫Broad Think Tank
#李基銘 #fb新鮮事 #生活有意思 #快樂玩童軍
#漢聲廣播電台
YouTube頻道,可以收看
https://goo.gl/IQXvzd
podcast平台,可以收聽
SoundOn https://bit.ly/3oXSlmF
Spotify https://spoti.fi/2TXxH7V
Apple https://apple.co/2I7NYVc
Google https://bit.ly/2GykvmH
KKBOX https://bit.ly/2JlI3wC
Firstory https://bit.ly/3lCHDPi
請支持六個粉絲頁
李基銘主持人粉絲頁:https://www.facebook.com/voh.lee
李基銘的影音頻道粉絲頁:https://www.facebook.com/voh.video
Fb新鮮事新聞報粉絲頁:https://www.facebook.com/voh.fbnews
漢聲廣播電台「fb新鮮事」節目粉絲頁:https://www.facebook.com/voh.vhbn
漢聲廣播電台「快樂玩童軍」節目粉絲頁:https://www.facebook.com/voh.scout
漢聲廣播電台「生活有意思」節目粉絲頁:https://www.facebook.com/voh.life
高智敏稽核 在 阮慕驊 Youtube 的精選貼文
00:00-21:54
代班主持人:孫慶龍
來賓:大華國際證券投顧 洪士哲分析師
主題:股市分析
節目時間:週一至週五 5:00pm-7:00pm
本集播出日期:2020.08.18
--------------------------------------------------------------------------
21:55-43:41
代班主持人:孫慶龍
來賓:企業稽核師 高智敏
主題:「生技股100大 退潮後的真相」
節目時間:週一至週五 5:00pm-7:00pm
本集播出日期:2020.08.18
高智敏稽核 在 商周讀書會|直播說書《財星500大企業稽核師的舞弊現形課 ... 的美食出口停車場
商周讀書會這回很榮幸邀請到財星500大公司駐美內部 稽核 經理 高智敏 蒞臨,與各位暢聊全新著作《財星500大企業 稽核 師的舞弊現形課》,同時法律白話文 ... ... <看更多>
高智敏稽核 在 財星500大企業稽核師的舞弊現形課 的美食出口停車場
《財星500大企業稽核師的舞弊現形課》作者高智敏的部落格,每周一更新,內容以舞弊偵防議題為主,包含防弊入門基礎、時事深度分析、世紀弊案回顧、書籍心得分享、優質 ... ... <看更多>