第二部分「為何感覺不到地球自轉?非慣性座標系裡的慣性力」
.
未讀第一部分的朋友可以先看:facebook.com/davidyu.phycat/posts/239431704213490
.
感覺不到地球自轉的原因就像感覺不到地球表面彎曲的一樣,人類對比地球實在太渺小。正如必須望向遠方海平線才能看見船帆先於船身出現,我們亦必須跨過遙遠的距離才能感受到地球自轉所造成的影響。
.
大家有玩過公園裡的遊樂設施「氹氹轉」嗎?它是一個會旋轉的大圓盤,盤上有支架。如果我們捉住支架在地上圍著氹氹轉走,然後跳上去,我們會感覺到一股力將我們推出去。這時放手的話就會被拋出去了,這就是所謂的「離心力」(centrifugal force)。如果各位在香港坐過會上高速公路的小巴,亦可以感受這種刺激的感覺。
.
但如果我告訴你,離心力其實並不存在呢?事實上,離心力屬於慣性力(inertial force),又稱為假想力(fictitious force),是在非慣性參考系觀察物理現象的產物。參考系是數學語言,指用來描述物體位置、速度等物理參數的坐標系統。慣性參考系就是互相靜止不動或者以等速移動的坐標系。
.
簡單來說,雖然牛頓力學在日常情況下適用於任何參考系,但在非慣性參考系裡使用牛頓力學就會出現慣性力。最常見的例子就是圓周運動。站在氹氹轉上的人在進行圓周運動,運動方向有所改變(注意物理學中的速度概念包含速率和方向),因而是個非慣性參考系。而站在地上看著氹氹轉的人則身處一個慣性參考系之中(事實上只是近似慣性參考系,因為地球也在動)。
.
因為氹氹轉在旋轉,慣性定律卻說物體在不受外力的情況下只會沿直線前進,在氹氹轉上就必須施力才能跟隨氹氹轉旋轉,一旦放手就會被「拋出去」。然而,氹氹轉旁邊的觀測者只會看見一個因捉不住支架而直線飛出去的人。順帶一提,捉住支架的力當然是真實的力,叫做向心力(centripetal force)。
.
現在可以回到地球自轉的問題。會自轉的地球是個非慣性參考系。就像在氹氹轉上一樣,地球上也會感受到離心力。事實上,這個離心力會抵消掉部分重力,使我們在不同緯度感受到不同的體重!用比較精確的物理詞彙,就是重力的一部分提供了給跟隨時球自轉所需的向心力。
.
由於赤道與地球自轉軸的垂直距離最遠,自轉速率最快,需要較多部分的重力提供向心力。南北兩極與地球自轉軸的距離則為零,重力無需提供給向心力。因此,站在赤道時的離心力會令體重比站在南北極時減少大約0.35%。
.
另一個我想簡單介紹的慣性力叫做科里奧利力(Coriolis force,簡稱科氏力),或者叫做科氏效應(Coriolis effect),描述在地球表面上移動時感受到的慣性力。由於地球並非一個圓盤而是個球體,因此科氏力的方向並不在本地水平面(local horizon)之上,與之有個夾角。把這個力拆開,可以得到兩個方向的分力,分別為與水平面平行的分力(遺憾地,這個分力亦稱為科氏力),和與水平面垂直的、稱為Eötvös效應的分力。
.
平行本地水平面的科氏分力會使任何在北半球水平移動的物體向移動方向的右方偏轉(俯視時為順時針方向),同時使任何在南半球水平移動的物體向移動方向的左方偏轉(俯視時為逆時針方向)。這就是颱風形成的原因,因而源自南半球和北半球的颱風會有相反的旋轉方向。Eötvös效應會在除離心力之外進一步改變我們感受到的重力。向東走時,Eötvös效應會進一步加強離心力,抵消更多的重力。反之,向西走時反而會加強了向下的力,就好像加強了重力般。
.
[有趣的是,源自北半球的颱風是逆時針方向旋轉的,剛好與科氏效應相反!這是因為颱風的形成過程是三維的,我正在寫一篇文章詳述。]
.
日常生活感受不到上述離心力、科氏力和Eötvös效應的原因很簡單,就是因為人類相對地球的尺寸來說,太過渺小。只有在作長距離移動時,我們才能察覺到這些慣性力。例如,炮彈彈道計算必須考慮地球自轉、飛機飛行感受到科氏力、大規模空氣流動形成颱風等。順帶一提,有都市傳說指科氏效應會導致南北半球馬桶沖水方向相反,這是不正確的。對比地球尺寸,馬桶實在太渺小了,作用在沖廁水上的科氏力比沖廁時水流的隨機擾動細微得多,沖水方向並不會受科氏效應影響。
.
歷史上首位直接測量到科氏效應的人是德國化學家懷斯(Ferdinand Reich)。物件自由落下時,由於移動方向為地心,計算指出科氏力會指向東面。在1831年,懷斯從160米高的地方掉下物件,發現物件落下的地點果然向東偏差了2.8厘米。
.
那有沒有辦法在不作長距離移動的情況下,證明地球會自轉?答案是肯定的。1851年,法國物理學家傅科(Jean Bernard Léon Foucault)用一個簡單實驗證明了地球確實會自轉。他用一條67米長(好吧,這也很長就是了⋯⋯)的線吊著一個28公斤重的鉛球,形成一個很長很重的擺,掛在巴黎先賢寺的天花版上。因慣性定律同樣適用於鐘擺,擺動平面在慣性參考系裡不會改變。擺動平面不變與物理學中的角動量守恆原理有關。但因地球自轉,地球上的人就會觀察到擺動平面隨著時間改變。
.
[這個實驗設備稱為傅科擺(Foucault pendulum),是世上每個科學博物館的必備展品。很多人會在早上很早就到博物館去,就是為了看工作人員開始擺動傅科擺的一刻。]
.
現在我們理解到,古希臘時代的差不多兩千年後,懷斯與傅科的實驗終於直接證明了地球會動。我們會在下一節討論太空是否真的是「無重力」。
.
【支持我的科普】
我的科普部落格:https://hfdavidyu.com
我的科研網頁:https://hfdavidyu.github.io
.
我已開設MeWe群組,在MeWe搜尋「余海峯」就能找到:
https://mewe.com/join/phycat
.
追蹤我的FB:https://fb.com/davidyu.phycat
追蹤我的IG:https://instagram.com/phycat
訂閱我的YT:https://youtube.com/c/DavidYuHoiFung
.
也請支持香港其他科學普及工作者!你的支持,能令科學在中文世界更加普及。
非慣性座標系 例子 在 牛頓運動定律【觀念】慣性座標系(選修物理Ⅰ) - YouTube 的美食出口停車場
講義下載區https://sites.google.com/site/phyelearning/phy1/Newton這是由吳旭明老師及蔡佳玲老師所建立的免費數位學習內容更完整的課程結構請 ... ... <看更多>
非慣性座標系 例子 在 [問題] 慣性坐標系、動/能量守恆- 看板Physics - 批踢踢實業坊 的美食出口停車場
請問,該如何解釋當球自由落下時的動量不守恆呢?
我不是指我不知道牛頓第二定律,由於合力不等於零而造成了動量時變率不為零,
所以重力對球造成了衝量,這是ok,但是關鍵出在牛頓第三定律。
不論地球質量與球的質量差距多麼懸殊,地球相對地面上之觀察者的速度必定為零,
所以合力總是為零,如果把這問題簡化,就變成:
若A,B兩球進行碰撞,且觀察者在A上時,碰撞過程必須在
B上加上慣性力,但儘管如此,動量是不是依然不守恆呢?
其他的動量在哪裡呢?(第三定律依然不成立?)
由牛頓慣性定律中的絕對空間假設,在慣性坐標系下,牛頓三大定律會成立,
因此可推得動量守恆定律,所以這是否表示,任何牽涉到與自身碰撞的問題,
都是不滿足牛頓之絕對空間,而是在非慣性坐標系,儘管加上了慣性力使之有「慣性」,
但也只是使牛頓第二定律得以解決非慣性坐標系問題而已,並沒有使牛頓第三定律
成立。所以動量守恆僅適用於慣性坐標系,這樣想是對的嗎?
如果是對的,是否表示在非慣性坐標系下(或者涉及到與自身交互作用的情況),
能量將會不守恆?(或者說無法由牛頓力學推理能量守恆?)
像是對於站在地面上靜止不動的觀察者而言,從高空自由落體的球的動能由來似乎
就是無法解釋的,對球的系統的合力做功即來自地球給予的正功,但是,球並沒有
給地球負功,所以出現了能量不守恆的現象。
我的問題有點複雜,請各位高手幫忙解惑,非常感謝~~
謝謝
我隱隱約約覺得,我的問題出在,參考系與系統是相同的部份,但不太確定
牛頓力學的物體應該不能分析自身吧?所以任何牽涉到觀察者本身的交互作用
都是不能用牛頓力學(甚至所有學問?)來分析的?
這個想法似乎有點廢話...不過還是想問問看
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 175.96.128.109
的內容是:「存在某些座標系,當物體所受合力為零時,物體將維持靜止或等速運動」。
這種坐標系被稱為慣性坐標系,亦即在這座標系觀察到的物體將具有「慣性」。
在慣性座標系中,牛頓第二與第三定律將成立,然而在非慣性坐標系中,物體
將失去所謂的「慣性」,為了讓物體擁有慣性(我自己是這麼解釋的,不確定是否ok),
所以在分析物體受力時,必須加上一假想力、使物體具有慣性的力。
如此一來,牛頓第二定律就適用,不過第三定律似乎還是不適用QQ(NOT SURE)
那請問我底下這問題呢
「牛頓力學的物體應該不能分析自身吧?所以任何牽涉到觀察者本身的交互作用
都是不能用牛頓力學(甚至所有學問?)來分析的」
這樣子的話,任何跟觀察者作交互作用的現象都不能被觀察者用定律解釋耶
(好像是)
(好像是)
那請問
(1)什麼是singularity,你在哪裡學到的呢?牛頓的自然哲學與數學原理這本書
有提過嗎?因為我看了很多跟牛頓當時有關的推理(亞里士多德、伽利略、笛卡兒到
牛頓的絕對空間、水桶實驗、...),都沒看到你說得singularity QQ
(2)以下這個問題該如何用牛頓力學解釋呢
當A與B球進行彈性碰撞時,若觀察者就是A,則它將觀察到"由A、B組成的系統"的
總動量不守恆(我應該沒算錯@@相對速度剛好反向),還是說這是正常的?
只是總覺得不受外力的系統總動量應該守恆...(還是說由A看到的AB雙球系統之合外力
不為零?)
(不考慮萬有引力定律的話)
Oh 你剛回的意思是,動量守恆只會發生在慣性坐標系嗎?
老實說我總覺得慣性與非慣性坐標系很詭異,似乎只有在運動尺度很小(相較地
球半徑)、速度遠小於光速時才有所謂的慣性座標系?
那麼一開始舉的例子呢?有一球從高空自由落下,這顆球得到的動量來自於誰呢?
在這情況中,相對地面靜止的坐標系是否成為了非慣性坐標系?
地球是恆靜止的,不是嗎?
若撇開牛頓力學、慣性座標不談,那麼該如何解釋在地面上的觀察者所察覺到的
下落的球的動量是無中生有的現象呢?
踩的地面?
這個問題解決後,才能進一步探討(對我來說)這個自由落下物體的動能由來..
地球的質心上來看呢?這樣是不是就GG了
所以球的動能增加,來自於地球對球作正功,但是球對地球卻不做功(地球質心上的觀
察者測量到的地球位移為零)
理論著手)
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:14)
計算「做功」。我有會錯意嗎?
你是指「相對地球靜止的觀察者所在的座標系為非慣性坐標系」嗎
那剩下一個問題拉:
所以無法將「上帝座標」設定在地球質心上嗎,假設地球質量分布完全均勻(想從
理論著手)
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:18)
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:19)
你是回
『你是指「相對地球靜止的觀察者所在的座標系為非慣性坐標系」嗎』
這個問題嗎
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:21)
謂的上帝座標。這個結論對嗎?
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:22)
地球相對靜止的觀察者所看到的自由落下的球的動量/動能由來之所以無法解釋,
是因為我處在非慣性坐標系中。
所以我想反過來問,是不是可以這麼定義慣性坐標系:
若分析的系統合外力為零時,滿足動量守恆定律、分析的系統合外力做功為零時,
滿足能量守恆定律,那麼分析這系統時所採用的座標系即為慣性座標系。
你們覺得這定義是對的嗎?
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:26)
是否有錯誤,因為若那個定義是對的,則這似乎進入了循環論證、邏輯謬誤。
若以下這兩條件成立,
1.「系統合力為零時,總動量守恆」
2.「系統合外力做功為零時,總能量守恆」
則現在的參考系為慣性坐標系。
然後又
若現在的參考系為慣性座標系,所以牛頓三大定律又成立,暗示1.2也成立。
造成循環論證,是這意思嗎?
※ 編輯: Qmmmmnn 來自: 101.14.9.191 (11/08 01:35)
... <看更多>