在臉書河道看到的一篇文章,發文的人翻譯了一則外國人的發文:
https://m.facebook.com/story.php?story_fbid=10158846902129328&id=602809327
我有在外國人的發文底下留言,可惜不能在這個翻譯的人底下留言,所以我打在這邊。
首先 #疫苗 是什麼?這個google很容易,高中生物應該也有提過,疫苗的發展大約兩百年,前一百年只有不活化疫苗和減毒疫苗,後一百年才陸續研發了純化蛋白疫苗以及基因工程疫苗等等。
再來了解疫苗的分類:
#活疫苗 有不活化與減毒活疫苗、異質性活疫苗(例如牛痘)
#死疫苗 有死毒疫苗、死菌疫苗、次單位疫苗(細分 類毒素疫苗、基因工程重組蛋白疫苗、胜肽疫苗、基因轉殖植物性疫苗、基因型疫苗或抗基因型抗體)、多核苷或DNA疫苗、載體疫苗、標記疫苗、mRNA疫苗(近十年嶄新研究)。
(附上大學課本疫苗發展與實驗內頁比較圖)
基因疫苗自1992年首次在科學文獻報告至今,已經成為最熱門的疫苗研究新方向,目前包括傳染性疾病、癌症、過敏症與自體免疫性疾病,以廣泛進行基因疫苗的臨床前或臨床研究並獲得良好的結果。
發文的人顯然不懂疫苗有分活疫苗跟死疫苗,也不懂mRNA疫苗不等於活疫苗,應該也不懂免疫學。
這篇錯誤訊息蠻多的,可以參考國衛院的說明
https://forum.nhri.org.tw/covid19/j_translate/j2022/
當年大學學習時就知道了,疫苗的研發與應用的智慧,基因疫苗的作用原理與傳統疫苗不同。
傳統死毒疫苗或者重組蛋白疫苗,病毒抗原是由體外注射到人體,經由巨噬細胞等抗原呈現細胞(APC cell)吞噬後,被分解的抗原片段經MHC2(組織相容性複合體第二型)呈現給T cell。此種免疫反應是以引發輔助T cell,產生抗體為主的免疫反應。
而基因疫苗是在進入細胞後於細胞質表現抗原蛋白,這些內生性蛋白有部分會被酵素分解成蛋白片段,在內質網和MHC1結合以後呈現在細胞膜上,藉此和殺手T細胞表面受器結合,活化殺手T細胞,引發細胞毒殺作用。
基因疫苗也能引發MHC2抗體反應,因此基因疫苗可以同時引發抗體反應和殺手T細胞反應。
2018年發表的文獻指出mRNA疫苗的優點:
Over the past decade, major technological innovation and research investment have enabled mRNA to become a promising therapeutic tool in the fields of vaccine development and protein replacement therapy. The use of mRNA has several beneficial features over subunit, killed and live attenuated virus, as well as DNA-based vaccines. First, safety: as mRNA is a non-infectious, non-integrating platform, there is no potential risk of infection or insertional mutagenesis. Additionally, mRNA is degraded by normal cellular processes, and its in vivo half-life can be regulated through the use of various modifications and delivery methods. The inherent immunogenicity of the mRNA can be down-modulated to further increase the safety profile. Second, efficacy: various modifications make mRNA more stable and highly translatable. Efficient in vivo delivery can be achieved by formulating mRNA into carrier molecules, allowing rapid uptake and expression in the cytoplasm (reviewed in Refs 10,11). mRNA is the minimal genetic vector; therefore, anti-vector immunity is avoided, and mRNA vaccines can be administered repeatedly. Third, production: mRNA vaccines have the potential for rapid, inexpensive and scalable manufacturing, mainly owing to the high yields of in vitro transcription reactions.
1. 安全性,非感染性活體病毒,沒有潛在感染跟插入誘導基因改變的風險。
2. 穩定且可製成載體進入細胞質中,屬於最小的mRNA載體。(過往的基因疫苗都是需要plasmid DNA載體DNA,多一個步驟。)
3. 沒有抗載體的免疫反應,因此不用擔心anti-vector immunity。不會有過敏或者自體免疫產生。
4. 生產也很便利快速。
美國食品與藥物管理局特別針對基因疫苗的安全性、潛力與免疫能力制定相關規定,”Points to Consider on Plasmid DNA Vaccines for Preventive Infections Disease Indication”,作為研究基因疫苗時的參考指標。
相關文獻references:
1. Donnelly,J.J.,J.B. Ulmer, J.W. Shiver, and M.A. Liu. 1997. DNA vaccines. Annu. Rev. Immunol. 15:617-48.
2. Cytotoxic T-lymphocyte-, and helper T-lymphocyte-oriented DNA vaccination
Toshi Nagata et al. DNA Cell Biol. 2004 Feb.
https://pubmed.ncbi.nlm.nih.gov/15000749/
3. mRNA vaccines — a new era in vaccinology
https://www.nature.com/articles/nrd.2017.243
重組dna高中 在 研之有物 Facebook 的最讚貼文
現今的國高中生,到實驗室動手做實驗的機會越來越少,長久下來「生物、理化」就等於「考題很難的科目」。
但若有機會從顯微鏡看到活生生的細胞、神奇的自然現象,對於科學的情感將大不相同,甚至能進一步運用對科學的熱情,試著解決生存的問題,例如糧食危機。
顯微鏡有這麼好看? >> http://research.sinica.edu.tw/meiosis-wang-chung-ju-qa/