比魚油更強大【GREEN GOLD 核桃肽口含錠】
❤️孩子學習、營養、防禦力由它來照顧!
.
說起我們家甫甫,簡直就是分心大王啊! 雖然說我也已經習慣了他散散漫漫的學習態度,但總是想要試圖改變這樣的狀況,搜尋了一些健康資訊,發現「核桃肽」很適合容易分心散漫的學生補充,說什麼都要試試看啊!
.
一開始也很擔心口味小朋友會不會接受,所以拿了【GREEN GOLD 核桃肽口含錠】的體驗包來吃,沒想到吃一顆就愛上,味道很不錯,微甜的口感,吃起來像是健康的糖果似的,甫甫喜歡,我也很喜歡!
.
而這陣子讓甫甫持續補充核桃肽口含錠之後,雖然沒有從平民老百姓變成超級小天才,但我有隱約感覺到孩子在上線上課程時變得比較專注、邏輯力和思緒也更清晰了!
.
這樣要說到核桃肽口含錠的三大主要生力軍「核桃肽粉、初乳蛋白、甘蔗萃取物」,三種都是對孩子非常有幫助的成份,我也把重點整理一下給需要的爸比媽咪:
.
🔹核桃肽粉🔹
擁有智慧樹的美稱,這個成份比魚油更厲害,沒有魚油來源的風險,核桃肽萃取更安全無疑慮幫助延伸組織思考路徑,提升邏輯表達能力! GREEN GOLD的核桃原料栽種源自阿克蘇有機農場,經天山雪水灌溉,由2-3個胺基酸組成小分子胜肽,蘊含80%以上吸收力,感受更強!
.
🔹初乳蛋白🔹
採集母牛生產30分鐘內之牛初乳,含有大量營養素、免疫因子、成長因子。所以口含錠吃起來淡淡鮮乳清香口感,讓小孩愛不釋手!
.
🔹甘蔗萃取物🔹
使用天然來源甘蔗萃取物,成份簡單純粹,提升保護力,在現在這種大環境不友善的疫情期間,真的很需要!
.
【GREEN GOLD 核桃肽口含錠】2歲以上小孩就可以補充了!一天2-4錠,好處不是我說說而已,是有臨床實驗證實的喔! 記憶力、課業表現在持續補充之後會感受到突破,真心覺得可以把握兒童成長的黃金期,讓孩子的思緒更清晰!
.
目前有優惠活動,快來看看~
❤️記得輸入折扣碼【fish】(都要小寫),才有折扣優惠喔! 😊
.
✅讓孩子贏在起跑點的秘密武器 https://lihi1.com/w9L04
.
新會員加入享200元
全館滿2000免運
購物金滿千折百
開放海外訂購 (新加波、馬來西亞、香港)
.
#告別分心時代 #思考力救世主 #兒童版全新登場 #一錠搞定大人小孩 #全速航向學習快車道
「農金保經線上學習路徑」的推薦目錄:
農金保經線上學習路徑 在 軟體開發學習資訊分享 Facebook 的精選貼文
✅ 課程說明
成為一個完整的資料科學家和機器學習工程師! 加入一個由20多萬名工程師組成的線上社群,參加一個由行業專家教授的課程,這些專家實際上為矽谷和多倫多等地的大公司工作過。 這是一個剛剛在 2020年 1 月推出的全新機器學習和資料科學課程! Andrei 課程的畢業生現在在谷歌、特斯拉、亞馬遜、蘋果、 IBM、 JP 摩根、 Facebook 等頂級科技公司工作。
從頭開始學習資料科學和機器學習,得到聘用,並在 Udemy 的最現代、最新的資料科學課程(我們使用最新版本的 Python、Tensorflow 2.0 和其他程式庫)的道路上享受樂趣。 本課程的重點在於提高效率: 不要再花時間在令人困惑的、過時的、不完整的機器學習教程上了。 我們非常自信,這是你找遍任何地方才能找到的最全面、最現代的課程(我們知道,這是一個大膽的陳述)。
這個綜合性的、基於專案的課程將向你介紹資料科學家的所有現代技能,在這個過程中,我們將建立許多真實世界的專案,新增到你的履歷組合中。 你可以訪問 Github 上的所有程式碼、工作簿和模板( Jupyter Notebooks ) ,這樣你就可以馬上把它們放到你的作品集中了! 我們相信這門課程解決了進入資料科學和機器學習領域的最大挑戰: 在一個地方擁有所有必要的資源,並學習僱主想要的最新趨勢和工作技能。
課程將是非常實際的,因為我們將帶領你從頭到尾成為一名專業的機器學習和資料科學工程師。 課程提供兩個路徑。 如果你已經知道程式設計,那麼你可以直接進入並跳過我們從頭教你 Python 的部分。 如果你是全新的,我們將從一開始就教你 Python 以及如何在現實世界中使用它來完成我們的專案。 不要擔心,一旦我們通過了像機器學習 101 和 Python 這樣的基礎知識,我們就可以進入高階主題,像神經網路、深度學習和轉移學習,這樣你將能夠在真實世界中實踐,並為實戰做好準備(我們向你展示完全成熟的資料科學和機器學習專案,並給你程式設計資源和備忘錄) !
本課程的主題包括 :
✅ 資料探索與視覺化
✅ 神經網路和深度學習
✅ 模型評估與分析
✅ Python 3
✅ Tensorflow 2.0
✅ Numpy
✅ Scikit-Learn
✅ 資料科學與機器學習專案和工作流程
✅ 在 Python 用 MatPlotLib 和 Seaborn 做資料視覺化
✅ 轉移學習( Transfer Learning )
✅ 影像辨識和分類
✅ 訓練/測試並交叉驗證
✅ 監督學習 : 分類、迴歸和時間序列
✅ 決策樹和隨機森林
✅ 整體學習( Ensemble Learning )
✅ 調整超參數( Hyperparameter Tuning )
✅ 採用 Pandas 資料框解決複雜任務
✅ 採用 Pandas 處理 CSV 檔
✅ 採用 TensorFlow 2.0 和 Keras深度學習 / 神經網路
✅ 使用 Kaggle 並進入機器學習競賽
✅ 如何呈現你的發現並讓你的老闆印象深刻
✅ 如何為你的分析清理並準備你的資料
✅ K 最近鄰( K Nearest Neighbours )
✅ 支援向量機( Vector Machines )
✅ 迴歸分析( Linear Regression/Polynomial Regression )
✅ 如何運用 Hadoop、Apache Spark、Kafka 和 Apache Flink
✅ 如何用 Conda、MiniConda 和Jupyter Notebooks 設定你的環境
✅ 配合 Google Colab 採用 GPUs
到本課程結束時,你將成為一名完整的資料科學家,可以在大公司找到工作。 我們將利用我們在課程中學到的一切來建構專業的真實世界專案,比如心臟病檢測、推土機價格預測器、犬種影像分類器等等。 到最後,你將有許多你已經建立的專案向其他人炫耀。
事實是: 大多數課程都教你資料科學,而且就只這樣。 他們會告訴你如何開始。 但問題是,你不知道接下來要往哪去,也不知道如何建立自己的專案。 或者他們會在螢幕上顯示大量的程式碼和複雜的數學運算,但是他們並沒能好好地解釋清楚到你能夠自己去解決現實生活機器學習問題的程度。
無論你是程式設計新手,還是想提高你的資料科學技能,或者來自不同的行業,這門課程都是為你而設的。 這個課程不是讓你在沒有理解原則的情況下編寫程式碼,這樣當你完成這個課程的時候,除了看另一個教學,你不知道還能做什麼。 不! 這門課程將推動你且向你挑戰,從一個完全沒有資料科學經驗的初學者,到成為一個可以滿載離開、忘記 Daniel 和 Andrei、建立自己的資料科學和機器學習工作流程的人。
機器學習在商業行銷和金融、醫療保健、網路安全、零售、運輸和物流、農業、物聯網、遊戲和娛樂、病人診斷、詐欺檢測、製造業的異常檢測、政府、學術 / 研究、推薦系統等等方面都有應用。 在這門課程中學到的技能將為你的職業生涯提供許許多多的選擇。
你聽到許多像人工神經網路或人工智慧等敘述,完成本課程,你將對這些詞有深刻的了解。
現在就加入課程,加入我們社群,在這個行業獲得支持,學習資料科學和機器學習。 我們保證這比任何關於這個話題的訓練營或者線上課程都要好。 課堂內見!
https://softnshare.com/complete-machine-learning-and-data-science-zero-to-mastery/
農金保經線上學習路徑 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
為了活下去,全球最大的零售商沃爾瑪變身數據公司
文:王茜穎 / 若水 Flow AI Blog 編輯團隊
【本文重點】:
1. 今天,人工智慧不再是一種選擇,而是生存下去的基本必須品。
2. 為了預測消費趨勢、提高供應鏈和營運效率,沃爾瑪張開數據網,即時監控2000億筆的內部交易數據,200 個外部數據。
3. 從行銷、採購、品管、上架、庫存管理到配送,AI 正在改寫超市地景和運作方式。
零售業是一個國家最古老的行業。但你發現了嗎?全球最大的零售業龍頭沃爾瑪 Walmart,正在把自己變成一家數據公司。
它不得不。它最大的競爭對手,吃下線上零售市場一半江山的電商龍頭亞馬遜,不斷探索線下經營。繼實體書店、無人便利店 Amazon Go、收購全食超市(Whole Foods Market)之後,2019年再度推出 Amazon 4-star,銷售在亞馬遜網站上獲得4顆星以上評價的商品,準備對線下零售市場攻城掠地。
「今天,人工智慧不再是一種選擇,而是生存下去的基本必須品。」知名暢銷作家Bernard Marr 說。《華爾街日報》形容這是一場「不斷升級的科技地面戰」。
如何確保對的產品在對的時機,放在對的位置,做出對的定價,以方便對的人購買,是競爭白熱化的零售業的致勝關鍵。
即時監控2000億筆的內部交易數據,200個外部數據
為了抓出客戶需求、提高供應鏈和營運效率,沃爾瑪阿肯色州本頓維的總部設立了@WalmartLabs 和 Data Café(Collaborative Analytics Facilities for Enterprise,企業協作分析工具),監控過去幾週高達2000億筆的內部交易數據,以及氣象、經濟、電信、社交媒體、油價、鄰近沃爾瑪的重大事件(如:體育賽事)、美國最大評論網站Yelp、信用徵信網站Experian等200個外部數據。
沃爾瑪每週預測全美4700家店,共500億件商品需求,「我們每個週末都提出一套新的預測,」「我們有12小時完成所有的預測,約3天完成所有的訓練。」@WalmartLabs 傑出數據科學家和數據科學主任John Bowman說。
但沃爾瑪的規模實在太大了,Bowman說原有的開源軟體,「隨著我們擴大演算法規模,加入愈來愈多的數據,涵蓋愈來愈多的類別,開始遇到嚴重問題」,目前其預測模型是由內部改寫和開發的機器學習演算法組成,每項商品的預測,都建立在350個數據特徵上。
除了預測消費風向,最基本的,「用來確保門市和配送中心的庫存水位,足以滿足預測的需求。它不只幫沃爾瑪控制庫存成本,也確保架上的庫存足以應付來客或網路訂單。」前@WalmartLabs印度班加羅爾主任Nitin Sareen指出。
沃爾瑪 Walmart 同時收集所有顧客的消費紀錄、住在哪裡、並從店內的免費無線網路追蹤其產品喜好。2017年的報導指出,沃爾瑪掌握了6成美國成人,近1.45億人口的詳細資料。「我們想知道世界上所有的產品,我們想瞭解世界上每一個人,然後我們想要擁有連結兩者,促成交易的能力。」前沃爾瑪全球電子商務與科技執行長Neil Ashe曾說。
它的「社會基因體計畫」(Social Genome Project)監控社交媒體上的公開對話,參透消費者的社交DNA,藉以預測消費趨勢。沃爾瑪開發的Shopycat禮品推薦APP,「透過社會基因體計畫,分析朋友的臉書上的讚、分享、發文等動態,解除送禮壓力,提高送禮樂趣。」
當人們在線上展現我們的喜怒哀樂時,沃爾瑪就從分析臉書和推特的對話,在趨勢轉成需求前,成功預測棒棒糖蛋糕機、電動榨汁機的需求,立刻進貨、鋪貨。
數據讓沃爾瑪(Walmart)能預測未來趨勢,抓出過去錯誤
除了預測未來,即時數據和分析,讓沃爾瑪從異常銷售數字中,立即抓出定價失誤,或發覺特定門市根本未將商品上架的問題。機器學習把解決問題的時間從2~3週,大幅縮短為20分鐘。「若你得花上一週或一個月分析你的銷售數字,才能獲得洞見,你那段時間的營收已經蒙受損失。」沃爾瑪資深統計分析師Naveen Peddamail說。
為了收集消費者資訊,沃爾瑪甚至在2012年推出了自己的搜尋引擎Polaris。今年2月,沃爾瑪再度收購以色列科技新創Aspectiva,利用其自然語言處理功能 (Natural Language Processing),讓電腦擁有理解人類語言的能力,分析客戶的產品評論等用戶生成內容,並結合其瀏覽行為,以提供個人化的產品推薦。
沃爾瑪每小時產生約美國國會圖書館館藏167倍的數據,這些通通餵給雲端。沃爾瑪和微軟聯手建立全球最大的私人雲,每小時從百萬名消費者身上收集2.5 petabytes非結構化的數據,做出行銷、採購、鋪貨、庫存管理等各種決策。有一說,此舉是要和亞馬遜的Amazon Web Services (AWS)一別高下。
衝刺電子商務戰場,營造個人化體驗、用AI 工智慧鞏固生鮮市場
電子商務上,沃爾瑪仍看不到 Amazon 亞馬遜的車尾燈。
為此,沃爾瑪接連併購 Jet.com、Bonobos、中國電商 JD.com、及砸160億美元買有「印度亞馬遜」之稱的 Flipkart,去年沃爾瑪亦翻新官網,挾其龐大的數據能力,用消費者的所在地、瀏覽和購買歷史,加強區域與個人的個人化體驗。
例如,顯示當地熱門商品、通常一起合購商品、「我的門市」生鮮配送服務;提供「輕鬆續訂」功能,類似亞馬遜網站上的快速按鈕(Dash button)。去年第四季,沃爾瑪的電子商務營收成長43%,eMarketer並預測今年底沃爾瑪將分食4.6%的市場,較去年成長4%,居全美電商第三名。
沃爾瑪抓緊數據,苦苦追趕,有其苦衷。根據Accenture 2016年的調查,58%的消費者傾向在有個人化推薦的網站購物,一旦沒有,最快60秒就會失去興趣;SmarterHQ的報告則指出,在這樣的情況下,47%的消費者會直接轉往亞馬遜,便宜了沃爾瑪的頭號競爭對手。
為了拉抬線上銷售,沃爾瑪祭出廉價生鮮優勢。去年底全美有1600家門市提供生鮮配送,3100家門市設提貨中心。亞馬遜迅速回防,今年4月,旗下的全食超市推出第三波降價,以及2小時生鮮配送,1小時店內提貨,要挖沃爾瑪牆角。
這是一塊沃爾瑪輸不起的戰場。不同於亞馬遜,生鮮佔沃爾瑪全美近6成營收。金雞母保衛戰,沃爾瑪用AI和相機打造「新鮮度演算法」,名之「伊甸園」(Eden),用AI檢查蔬果缺陷和新鮮度,預測腐壞日期,確保蔬果從農場到貨架全程新鮮,終結食物(成本)浪費。在全美43個配送中心試用6個月,已替沃爾瑪省下8600萬美元,預計5年內將省20億美元。
在此之前,沃爾瑪必須派員在配送中心先目視檢查送進來的生鮮,接著再手動檢查是否符合美國農業部和沃爾瑪內部的食品標準。
「伊甸園源自我們生鮮營銷團隊工程師間的一場駭客松。」沃爾瑪部落格說。在6個月內,他們量化了美國農業部和沃爾瑪內部的食品標準,並發給稽查員一支iPhone,用Eden的APP記錄各種蔬果在不同生命週期時的樣貌,是否符合各項食品標準。這百萬張照片的資料庫,成了人工神經網絡進行深度學習最佳教材。
當稽查員在現場拍下照片時,機器將比對資料庫中的圖像,經過一層層,千百萬個神經元的數值運算後,評估蔬果新鮮度,預測保存期限,最後決定接受或退貨。沃爾瑪還把iPhone送到農夫手上,讓他們在農產品運送前先拍照,通過伊甸園把關再上路,從頭減少因品質而被退貨所衍生的成本。
「這代表(我們)能更有效率地催熟香蕉,當番茄還長在藤上時,就預測出它的保存期限,或依此調整蔬果上架的優先順序。」沃爾瑪供應鏈技術副總工程師Parvez Musani分析。販賣生鮮是一場和時間賽跑的賭局。時間,就是金錢。
除了產地和配送中心的品管,他們發現運輸過程中的溫度,也會影響蔬果新鮮度。為此,伊甸園即時監控蔬果在貨車裡的溫度,若發現溫度飆升導致蔬果「短命」2天,則立刻重新安排貨車路線,送到較近的配送中心,減少損失。
Musani舉例,沃爾瑪的明星商品香蕉,來自7個拉丁美洲國家,鋪貨到全美4千多家門市。不久的未來,在跨洲、跨國、跨州的長途運送過程中,伊甸園會重新估算「新鮮度」,決定香蕉運到哪裡。「最後香蕉會運到較近的門市,確保最新鮮,消費者樂於買一串美味香蕉,人人皆大歡喜。」
跟 Amazon 亞馬遜搶食 AI 語音購物市場
眼紅於亞馬遜語音助理Alexa登堂入室,開口即可在亞馬遜下單,沃爾瑪也想搶食語音購物市場。
近來的專利申請,透露沃爾瑪打算在產品中內建物聯網電子標籤,以監控家用品的使用情況,例如追蹤保存期限,或你提起洗潔精的次數,藉此推測何時需要補充,自動加入你的購物清單,並為沃爾瑪提供顧客行為的龐大數據,包括產品使用的時間和頻率。
今年4月起,直接呼喚Google Assistant也能在沃爾瑪下單,可在全美超過2100家門市提現貨,800家門市領取網購商品。由於語音下單容易指示不清(例如:買2罐洗衣精),為求準確,沃爾瑪顧客的消費記錄將和Google Assistant帳號綁定,以判斷脈絡。
儘管目前語音購物對營收的貢獻很小,分析師紛紛預測這是未來趨勢。為了「不落人後」,沃爾瑪甚至投資一家針對上流社會的個人購物服務新創Jetblack,會員可用簡訊「遠端遙控」購物員幫他們購物,年費要價600美元。
簡訊的文字,是絕佳的機器訓練素材。「沃爾瑪正在利用Jetblack的大批人力來訓練其AI,盼其有朝一日能提供自動化的個人購物服務,為搜尋欄消失,聲控購物成為主流的那一天,提早做好準備,」Jetblack執行長Jenny Fleiss告訴《華爾街日報》。該報分析,沃爾瑪將該投資視為AI和語音購物的研究中心,打算用它來打造和亞馬遜Alexa抗衡的秘密武器。
而JetBlack正是從沃爾瑪位於矽谷的科技孵蛋器Store No.8孵出來的新創公司。為了尋找下一代的零售科技,沃爾瑪透過Store No.8來孵化、投資新創,與創投和學術界合作,開發機器人、虛擬實境、機器學習和AI技術。
AmazonGo會是沃爾瑪的未來嗎?
自去年10月底,沃爾瑪旗下的倉儲式商店Sam’s Club宣布將在德州開第一家無結帳員的超市後,大家都在揣測沃爾瑪超市何時會跟上AmazonGo的無人店。
4月底,沃爾瑪公布了它的「未來超市」。它改造了紐約州Levittown的門市,化身「零售智能實驗室」(Intelligent Retail Lab),在真實運作的超市裡,裝滿感應器、攝影機、並建有龐大的數據中心。「這些硬體佈線之長足以爬聖母峰5次,處理能力之強大每秒能下載3年份的音樂(27000小時)。」沃爾瑪的部落格寫著。
5萬平方呎,3萬件商品,超過百名員工,可以確定的是,沃爾瑪的未來藍圖,不是AmazonGo。
具有人工智慧的攝影機,並非用來分辨消費者拿了什麼,好自動結帳,而是用來監控貨架上的存貨。機器「看見」架上商品,準確辨識品項和數量,並對照預測銷售需求的量,即時通知員工哪些商品空了,立刻補貨,或哪些放太久,立即下架。如此一來,確保架上永遠有貨,而且絕對新鮮。
這不是沃爾瑪第一次用AI來即時盤點庫存。
走進今天的沃爾瑪,你可能會碰到Auto-S貨架掃描機器人,穿梭在繁忙的貨架間。
自駕車的感應器和人工智慧,讓它能即時辨識路徑中的障礙物,優遊於樑柱、顧客、店員之間,避免碰撞。身高2英尺(約60公分),機器手臂最高可達8英尺高,裝有高解析度相機可快速掃描架上存貨、標價標籤和商品位置,而且免傳雲端,運用卡尼基美隆大學研發的Hawxeye人工智慧,機器人可現場用機器學習進行圖像辨識,加快分析速度,減少無用數據。
不到1小時,機器人就掃完數十個貨架,找出缺貨、庫存過低、沒有標籤、標價錯誤和錯置的商品,通知店員處理。在過去,這得花上一群人數天時間才能完成。
目前全美有50家沃爾瑪使用Auto-S貨架掃描機盤點架上商品。目前總里程650英里(近1千公里),尚未發生任何事故。來源:KPIX CBS SF Bay Area / 沃爾瑪
這提升了顧客的便利性,確保他們總能在對的貨架上找到想買的東西。對沃爾瑪而言,這能降低人事成本,減少貨架空間的浪費,但它還有更重大的意義:「驅動這類新科技的動力,是走向全通路零售的必要性。為了提供當天、低價或最後一哩運送,你必須以這些門市做為配送中心。但要實現這個目標,他們真的需要即時掌握架上有什麼,」Auto-S的製造商Bossa Nova執行長Bruce McWilliams接受Venturebeat採訪時說。
入口處的自助提貨塔就是明證,只要掃描你的網路訂單條碼,45秒內你的貨就會出現在輸送帶上,取貨變得跟「高科技自動投幣機」一樣方便。自駕車配送也進入測試階段。
去年11月,沃爾瑪宣布與福特合作,用自駕車宅配;7月,和Waymo(Alphabet旗下子公司,專門研發自駕車)聯手,在亞利桑那州小規模試點,「http://xn--walmart-6p3l44vn4ljhs1l8c981cucbz07isk0a.com/grocery下單,選擇到店取貨,我們的個人購物助理便會依據取貨時間,細心準備訂單上的商品。剩下的就交給Waymo。Waymo會接送顧客往返門市取貨,你可以利用這段時間完簡訊、小睡、工作,隨心所欲。」沃爾瑪部落格如此描述。
這一切聽起來,像是科幻小說?
沃爾瑪可不這麼認為,「今天,變化的速度很快。10年前,多數客戶還在讀第一代iPhone的消息,懷疑是否實用。現在,他們用手機上買東西,就期望宅配到府或店裡取貨 – 而且通常是當天,幾小時內,甚至幾分鐘內,」沃爾瑪執行長董明倫(Doug McMillon)說,「零售商得適應這些變化 – 在某些領域甚至引領潮流 – 不然就會落後並消失。」
附圖:圖說:去年改版後的沃爾瑪網站,新功能包括當地熱門商品、快速追蹤訂單、快速續訂、我的當地門市服務等,強化區域及個人化體驗。來源:沃爾瑪
圖說:伊甸園的APP介面,機器藉由照片的圖像辨識和比對,預估蔬果新鮮度。來源:沃爾瑪
圖說:只要45秒,16英尺高的自助提貨塔,就會準備好你訂的商品。來源:沃爾瑪
資料來源:https://ai-blog.flow.tw/walmart-ai-data-retail
農金保經線上學習路徑 在 農金保經教育訓練中心、eHRD、線上數位學習在PTT/mobile01 ... 的美食出口停車場
農金保經 教育訓練中心在PTT/mobile01評價與討論, 提供eHRD、線上數位學習、全國農業金庫保險就來保險保單資訊站,有最完整農金保經教育訓練中心體驗分享訊息. ... <看更多>
農金保經線上學習路徑 在 農金保經教育訓練中心、eHRD、線上數位學習在PTT/mobile01 ... 的美食出口停車場
農金保經 教育訓練中心在PTT/mobile01評價與討論, 提供eHRD、線上數位學習、全國農業金庫保險就來保險保單資訊站,有最完整農金保經教育訓練中心體驗分享訊息. ... <看更多>