「利潤」究竟是什麼
這一講不是要講經商,我們小小地梳理一個大大的話題:從經濟學角度看,人生應該追求什麼。
簡單地說,最值得追求的東西是「利潤」。
我不信你會不想要利潤。利潤是收入減去成本剩下的那一部分,是收穫比付出多出來的部分。利潤是正的,說明你的一切努力都沒有白費,說明瞭社會對你的肯定。利潤要是負的,就說明你創造的價值配不上你的一番折騰。
但你要是細想,利潤是一個神秘的東西。
*
你必須直接去市場上買賣點什麼東西才談得上利潤。上班拿固定工資是沒有利潤的。哪怕你工資再高,那也只是你的勞動所得,都是根據你這個水平,你應該得的,是市場認為正好等於你的付出的回報 —— 這表現在你要是不上班就沒有收入。
而利潤則是「不該得」的東西,可以說是躺著賺的錢。這個性質曾經使得有些思想家認為拿利潤是不道德的。
馬克思譴責利潤。你開個工廠,買了機器和廠房,雇了工人,進了一批原材料,工人生產出產品,你把產品賣掉。然後你一算賬,賣產品的收入減去工人工資、機器廠房和原材料的花費,還多出來了一筆錢,這就是利潤。你欣然把這筆錢放入自己口袋。馬克思說且慢!工人累死累活工作才拿那麼一點工資,你幹什麼了就拿這麼多錢,你那叫剩餘價值!你無償佔有了別人創造的價值。
你當然不服氣。你說不是啊,我管理工人,我組織生產,我聯繫了進貨和銷售,我安排廠裡的大事小情,這怎麼不是創造價值呢?
馬克思會告訴你,你做的這些事兒的確也是勞動,你可以拿一份高工資,但你的工資不會像利潤那麼高。你完全可以雇一個職業經理人替你管理工廠。你把職業經理人的工資發了,還會剩下一筆錢,這筆錢才是真正的利潤。
這個計算讓馬克思深感憤怒,產生了深遠的影響……咱們還是單說資本主義這邊對此是怎麼想的。崇尚市場的經濟學家也算了這個賬,但結果是利潤好像不應該存在。
我們假設老張開工廠賺了一萬塊錢的「淨」利潤。這個是把老張本人付出的管理勞動該拿的那部分報酬去掉之後剩下的錢,是老張「躺賺」的錢。那如果是這樣的話,市場上就應該出來一個老李:老李說既然是躺賺,我不用那麼高的利潤,我躺賺五千元就行,我願意把商品賣便宜點,給工人工資高點。那你說老張能幹過老李嗎?
你很容易想到老張繼續存在的理由。比如老張有資本而老李沒有。或者老張跟政府關係好,壟斷了這塊業務。或者老張掌握一個技術護城河,老李學不會。但是對經濟學家來說這些都不是本質問題:資本可以貸款,跟政府的關係可以用一個更好的條件重新談,技術可以請人研發。事實上,經濟學家的推理是,哪怕現在還沒有一個具體的老李,只要市場存在老李出現的可能性,老張就不敢壓榨太高的利潤,他必須用比較低的價格和比較高的工資預防老李的出現。
要這麼算的話,市場充分競爭的結果一定會把利潤變成 0。總會有一個老王出來,說我就當自己是個職業經理人跟大家交朋友算了,我拿個應得的工資就行,利潤我不要。
那真實世界里的利潤是從哪來的呢?當然市場不可能是充分競爭的,總會有些老張偶爾能享受到利潤……但市場力量應該讓利潤越來越薄才對。經濟學家必須找到一個產生利潤的過硬的機制,否則解釋不了為什麼總有人拿那麼高的利潤……甚至解釋不了為什麼有人願意開公司。
*
利潤從哪裡來這個問題的解決,在經濟學史上是一個里程碑。1921年,美國經濟學家弗蘭克·奈特(Frank Knight, 1885-1972)出版了《風險、不確定性與利潤》(Risk, Uncertainty, and Profit)一書 [1],提出了一個傳世的洞見:利潤來自不確定性。
組織生產、採購和營銷、日常的管理,企業中一切常規的操作都可以由拿固定工資的人做,只有一件事必須由企業家本人做,那就是風險決策。
比如說,為了在今年秋季上市一批新女裝,我們必須在夏天就定下來款式,備工備料,展開生產。可是秋天還沒到,現在誰也不知道到時候流行哪個款式,那我們生產什麼呢?這個決策,必須由企業家本人做出。為什麼?因為他是承擔決策風險的人。
如果你賭對了,秋季正好流行這款女裝,因為別的服裝廠沒生產只有你生產出來了,你就佔據了稀缺,你就可以要一個高價,利潤歸你。你要是賭錯了,到時候服裝賣不出去,工人和經理們還是會拿同樣的工資,損失也歸你。
生產、日常管理、冒險,是三種不同的能力。為什麼企業家要開公司?因為他敢冒險。為什麼工人和經理人選擇拿固定工資?因為他們不想冒險。
這個道理聽著挺簡單,但是其中有個大學問。奈特之前的經濟學家也想到了企業家承擔風險,但是他們沒搞清楚到底什麼是風險。
*
如果女裝只有比如粉色和綠色兩個選擇,而且你明確知道它們流行的可能性都是 50% —— 那這個風險其實不用企業家承擔。因為你可以買保險!概率已知的風險都是可以管理的。銀行可以給生產兩款女裝的工廠都提供貸款,到時候肯定一個賠錢一個賺錢,只要利息和保險合適,銀行和企業雙贏。有這個保險機制在,大家誰都不用冒險,可以各自拿一份固定工資,根本不需要企業家。
奈特的真正貢獻在於,他把風險給分成了兩種。
第一種就叫「風險(risk)」,但是特指那些已知概率大小的風險。這種可以用保險解決,不需要企業家。
第二種叫「不確定性(uncertainty)」,是指那些無法評估概率大小,可能是從來沒出現過的新事物,甚至是現在人們根本無法想象的東西。這個不確定性,才是企業家存在的理由,才是利潤的來源。
現代經濟學家把這個不確定性特別稱為「奈特不確定性(Knightian uncertainty)」。我們專欄講過 [2],統計學家有個更科學的說法。已知概率大小的,叫做「偶然不確定性(Aleatoric uncertainty)」, 也叫統計不確定性。不知道概率大小的,叫做「認知不確定性(Epistemic uncertainty)」,也叫系統不確定性。前者發生的事情都是你事先能想到的,後者則是你想不到的。比如「黑天鵝」事件,就是一種認知不確定性。
你開一個賭場。賭場每天都在跟賭徒們賭博,但是因為輸贏的概率是固定的而且有利於你,所以你的日常經營本身並不是冒險。真正的冒險是要不要開這個賭場:你能預測客流量足夠讓你收回投資嗎?你能擺平當地黑社會嗎?你能確保政府發展博彩業的政策不會變嗎?這些事兒沒法計算概率。
搞定這些不確定性,才是企業家該乾的事兒,也是企業家的回報所在。
流行趨勢通常不能用以往的經驗判斷。有個企業家認准了一個全新的款式,說我非得生產這個,銀行能給他擔保嗎?這個不確定性沒法系統化管理,他自己必須承擔 —— 這才是企業家存在的意義。你要是願意給這樣的項目投資、分擔不確定性 —— 而不是把錢交給銀行拿固定的利息 —— 你也是企業家。
要做服裝這一行的企業家,你肯定得對流行趨勢有個很好的感覺才行。不過企業家本人不一定非得特別懂女裝 —— 他完全可以請人來給他設計,只是設計師不承擔不確定性,人家拿固定的設計費,風險還是要由企業家承擔。
簡單說,企業家,是市場上的 player。他拒絕聽別人的安排,非得按照自己的想法決定做什麼,然後他安排別人也按照這個想法去做,最後他獨自承擔後果。
*
奈特找到了公司存在的最根本理由。市場競爭再充分也不可能是絕對可預測的,未來總會有各種各樣的不確定性,需要企業家在各個方向上大膽探索。奈特後來成為經濟學的大宗師,他本人沒得過諾貝爾獎但是他有五個弟子得了諾貝爾經濟學獎,他是「芝加哥學派」的祖師爺。
奈特之後,別的經濟學家又找到了公司存在的其他理由。比如科斯說公司減少了交易成本能起到協調作用。張五常說公司提供了合約。還有人說公司解決了監督、提供了資源獨特性……等等等 [3],但是奈特這個「不確定性」的說法,是最根本的。
如果從某一天開始,世界上再也沒有不確定性了,那麼市場的力量就會迅速把公司利潤變成 0:企業家就不需要存在,大家都應該拿固定工資。
其實現在企業家的日子也不好過。我們看街上那些餐館,開了關關了開,真正能長期賺錢的沒有幾家,可能大部分老闆都是賠錢。沒有稀缺是不可能賺到錢的,但是利潤只發生在你剛剛掌握某種稀缺、而別人還沒有跟上的那個時間段。別人跟上了,模仿了,你就必須再去尋找新的不確定性。
一切賺錢的生意都有不確定性。你把一大筆錢放銀行裡拿利息,那叫躺著花錢不叫躺著賺錢。哪怕是買幾套房子收租金,你都得面對房產市場的不確定性。
世界上沒有一勞永逸的利潤,也沒有真正躺著賺錢的企業家。
那你說平均而言,企業家的收益是正的還是負的呢?我到底該不該去做個企業家呢?沒有答案。有答案就不叫不確定性了。
*
不確定性都是從哪來的呢?一個有意思的不確定性是中國經濟學家張維迎在 2008 年的一次演講中說的 [4]。他說中國改革開放這麼多年之中,商業活動最大的不確定性,是「體制的不確定性,政策的不確定性,政府行為的不確定性。」這體現在政府對資源的調配非常隨意。
張維迎當時說,正是這個不確定性加劇了中國的貧富差距。在中國市場化程度高,體制不確定性低的地區,比如浙江省,人們更富裕,收入差距反而更低:因為利潤分布更均勻。
這個規律是不確定性越大,利潤就越高 —— 企業家為利潤而奮鬥,但是市場看不見的手恰恰在降低總利潤。是那些看得見的手,提供了額外的不確定性,才給人帶來不合理的利潤。
那你說如果我們把體制給理順,讓競爭越來越公平,未來的不確定性會不會越來越少呢?不一定。
*
奈特列舉了不確定性的好幾種來源,比如未來人口的變化、資源的供給等等。其中我們現代人最關注的肯定是創新。創新本質上是不可預測的,你不知道未來會有什麼新技術出來,你也不知道一個新技術出來會不會被市場接受。一切創新都有強烈的冒險成分,關於這一點已經有太多經濟學家討論了。
而奈特更厲害的一個洞見,則是「價值」的不確定性。說白了就是人的慾望的不確定性,你不知道未來的人喜歡什麼。奈特 1924 年發表了一篇文章叫《經濟學中科學方法的局限性》,說經濟學不僅僅是什麼資源的有效調配,把一個什麼價值函數最大化的問題,因為人的價值觀是會變的 ——
「人生在根本上是對價值的探索,是努力發現新價值,而不是照著現有的價值觀把生產和享受最大化。」[5]
一百多年前整天坐馬車的人沒有想要一輛汽車。2006 年以前的人並不期待智能手機。今天的多數人不能理解馬斯克為什麼非得讓人去火星。人生的終極任務不是滿足某種價值,而是發現和創造新價值。
因為這個見識,奈特後來被認為是個道德哲學家,而不僅僅是個經濟學家。
也因為這一點,你不需要非得是個企業家,也不一定非得拿金錢利潤。藝術家、教育家、每個工人和管理者、包括每個消費者,都可以是價值的發現者和不確定性的製造者。
只要把周圍的世界往你想的那個方向上推動一小步,就算是你的成功。
注釋
[1] 弗蘭克·奈特,《風險、不確定性和利潤》,中文有郭武軍、劉亮翻譯版,華夏出版社 2013。
[2] 精英日課第三季,哪種不確定性?什麼黑天鵝?
[3] 關於公司為什麼存在的理論發展總結,可參考向松祚,《新經濟學》第二卷,新經濟範式。
[4] 張維迎的這次演講首次發表於《經濟觀察報》2008年1月20日,修改後的文章曾收入作者主編的《中國改革30年:10位經濟學家的思考》。
[5] Frank Knight (1924), "The limitations of scientific method in economics」, 原文是「Now this, we shall contend, is not very far; the scientific view of life is a limited and partial view; life is at bottom an exploration in the field of values, an attempt to discover values, rather than on the basis of knowledge of them to produce and enjoy them to the greatest possible extent. We strive to "know ourselves," to find out our real wants, more than to get what we want. This fact sets a first and most sweeping limitation to the conception of economics as a science.」
同時也有3部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,杜氏數學 官方網站: http://www.HermanToMath.com 賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io ---------- ?️賭Sir是杜氏數學Herman To Math的始創人 ?全港唯一「完爆」【DSE Core+M1+M...
賭大小概率 在 謝銘元:失敗並不可恥但要有用 Facebook 的精選貼文
[如果沒有遍歷性、就會失去概率權:有關投資(與人生)最重要的事 - 我在倫敦政經學院學到的第一件事]
剛回到台灣旅行,在陰天的台北街頭旁,今天來寫點故事。
不過以下要講的事情,也是個重要的決策原則。如果能因此對做決定、選擇或投資有什麼幫助,那追蹤美國金融日記也就值得了。
——————
內文開始前,先工商美國金融日記用心準備的投資科學課:
▌24單元入門投資科學、一次搞懂投資必備知識! ▌正式上架Hahow好學校!
財報狗、股癌 Gooaye-- 謝孟恭、MacroMicro 財經M平方創辦人Rachel、 李柏鋒與十二位財經專家重磅推薦:設計給多數人的第一門投資必修課。
立刻看詳情🔎=> https://bit.ly/31ayF5f
#設計給多數人的第一門投資科學課
#美國金融日記用心帶你從科學認識投資看懂市場
#一次搞懂關於投資必備的知識
#告別碎片化的知識不再受到消息干擾
#美國金融日記
——————
[初生之犢不畏虎]
還記得第一次離開台灣在倫敦求學的時候,年紀還小,什麼都不懂,但初生之犢不畏虎。畢竟,能拿到這領域堪稱世界第一學程的入學,要我們謙虛談何容易。
長輩看到我們這麼得意,當然也是笑笑的送走我們祝我們一路順風。然後長大後知道年輕人終究是年輕人。
在這個學程當中,聚集了各地的不同科系第一名,來自普林斯頓、牛津大學、劍橋大學、北京大學、曼漢姆大學、博柯尼大學等。
--
[倫敦高盛交易員出身的傳奇人物IM]
而要應付我們這群(過度自信、目中無人)P孩的首席教授自然也不是泛泛之輩。我們就叫這個人IM。
IM 是個典型的英國人,劍橋大學數學系 (與PART III) 第一名畢業。畢業後,踏入金融業,在倫敦高盛擔任交易員、並且很快的熟悉金融市場,第二年就升上Associate。
很快的他發現,雖然在交易上取得很好的成績與獲利,但金融市場有許多事情還不能理解。
他老兄放著千萬年薪與bonus就這樣辭職不幹了,回到倫敦政經學院讀經濟學碩士。之後拿到哈佛大學經濟系入學與博士學位。並且成為當年最佳武將,加入史丹佛大學商學院。直到近年才與老婆一同回英國定居。
我在和套利定價理論發明人信件往來過程當中,可以感受到這些資深前輩都對IM 抱持著非常高的敬意,某方面可以說他是一個真正了解市場的人:有科學嚴謹的船堅炮利加上真實市場交易實戰、同時夠好的數理基礎、以及本來就夠聰明。
在他的Office Hour當中,可以說是天下圍攻。各個學生帶著各種不同的問題去,就好比市場的各種波動跟問題。
而他總是氣淡神閒的給出「正確」答案。在金融市場中,最重要的是正確答案。因為不確定性就是不確定性。而掌握確定與正確是穩賺不賠的事情。
--
[ 克服 More 的心魔]
華爾街 II- 金錢萬歲 有一個橋段:「Q: 你這樣一直賺錢想賺到多少你才滿意 A: 無止盡 (More) 」
這在經濟學上聽起來理論上其實也沒有什麼問題,極大化預期的效用、產出、快樂程度,再給定的資源條件下。
同時這某方面也很政治正確,鼓勵人們要努力、要變得更好、要進步、要成長、要成功、要考高分、要賺大錢、要有更好的將來。
沒那麼做,還有人會來怪你不努力才會失敗 =3=。
做為臺灣土生土長的寶寶,我也抱持著這個態度。
我記得那時候去問的問題是,我想要把兩堂基本課程換成隔壁經濟系數理計量與經濟組的高等課程,這樣有助於我未來可能可以表現好就申請上哈佛大學。我想要試試自己的極限在哪。
很合理吧?
但交易員出身的IM深諳此道,直接勸退我做這件事情。他說了他當年跟我念一樣的學程,面對一樣的十字路口。一批一模一樣的學生,做一模一樣的選擇。
他當年選了基本組,最後也還是去了哈佛。反倒是當年選高級組的,沒有人到哈佛,而後續表現也沒有比較好。
他說關鍵在於精通一件事情。如果選高級組,可以精通,那當然很好,但不保證世界上經常有人可以做得到。如果沒有把握,何必淌這趟渾水。
再來,選基本組,精通也夠上哈佛了。按步就班把每一件你要進行的事情有效的做到極致,基本保證了你的成功。
“And my question to you is, are the habits that you have today on par with the dreams you have for tomorrow. That’s something you need to ask yourself every single day. Because whatever you do on a regular basis today will determine where you will be tomorrow.”- Stephen Curry
成功從來都不是越級打怪來的。
總之我再三的確認,一個優秀學生不會因為選基本組而被埋沒才能後,我就也跟隨IM選了普通組,事後回想也意會到這實在太睿智了。
因為,我才意識到,在真實的競賽場上,如果沒有辦法在一件事情上做到極致,勝率可以說是0也不為過。
--
如果當初我們在高級組陣亡,那麼就不會有任何後續在這場上的發展了。
選普通組就能夠上哈佛,有沒有滿足自己的目標。有。既然如此,何必承擔不效率的無謂下檔風險。
--
[實際上]
實際上在執行的時候,經常會設定高於最佳選擇的目標,造成不必要的價值損失。
你不難發現,PTT每隔幾年,就有人虧掉500萬以上,依照不同的原因,即便投入只有一點點的本金。
他們可能是當選擇權的賣方、或是交易衍生性商品、又或是承擔超級高風險去賭一些基本會下市的股票。
任何一個不報名牌、正派的部落客/Podcast 理財專家都都也一再強調:任何投資都不要壓身家。
投資理財本來的目的是調整現金流、得到適當報酬,讓自己的總生活變得更好,但經常會看到投資人為了追求多一點點的報酬,卻付出了不成比例的下檔風險。
市場上永遠不缺好的投資的機會,沒有哪一個投資機會值得你壓身家進行的。
如果你沒有辦法活到接下來的機率實現,那麼一切所謂勝率都沒有意義。
--
總結:
不管是投資與運動競賽,
- 成功完成目標的路上,成功者的失敗次數 平均會比 失敗的人的失敗次數還多。因為真實的市場只有常勝。任何球賽、競賽都是相同的,就算是明星球員,勝率也就是50%加一些,不會是100%。
- 勝率的來源之一是對於自己的選定守備範圍的精通與卓越。
- 有勝率,必須要存活到足夠久,勝率才有意義。
- 給定能達成滿意的目標、做極小化風險的選擇,是能夠完成長期目標的原則之一。
最後用一個經典的量化的例子總結,
「你領到這個月月薪15萬元,走出門,有一個賭大小的機會,開大與開小的機率分別是50%。猜中就可以翻倍、猜錯就會歸零。
你是個不愛好風險的人。你可以下注一次,那你最佳的下注金額應該是多少? 」
這期望值等於0,你說不玩也罷。那下一個問題:
「今天有一個非常可靠的內線告訴你,開大的機率有60% ! 那你最佳的下注金額應該是多少? 」
這期望值大於0了! 面對這大好機會該怎麼做呢?
A. 借錢投資,賭好賭滿、善用內線優勢
B. 有點風險我就不愛、依然不玩
C. 分散風險、下注一半薪水好了
D. 富貴險中求、下注全部薪水
E. 以上答案我都不喜歡,我覺得正確選擇是下注 ___ % 薪水
※留言告訴我們答案或Tag 你的朋友來解題,不用抽直接送 我們年度作品 [漫步華爾街:有關投資最重要的七個科學基礎] 第一章電子檔,內有此科學基礎完整詳解與說明。(贈獎活動已經截止) (現在購課限時49折贈送完整版! 立刻看詳情🔎=> https://bit.ly/31ayF5f)
——————
美國金融日記團隊用心製作的獨家投資科學課程,帶你用一百二十年的數據與科學發現,認識不確定的投資與金融市場中確定的基本事實與知識。
【24單元入門投資科學、一次搞懂投資必備知識!】
就在Hahow好學校 => https://bit.ly/31ayF5f
#限時預購四九折
#前三天購課加碼贈送財經M平方全球經濟數據專業版貳拾天
賭大小概率 在 游庭皓的財經皓角 Facebook 的精選貼文
【跟散戶對幹 是不是穩賺?】
早上直播,談到網友總愛問我的一個問題:如果找一個炒股一直虧的人,反向操作,是不是就可以賺大錢?散戶總是賠錢,跟著散戶對幹,是不是也穩賺?
講個故事好了。我一個朋友有一百萬,他決定把全部身家拿去澳門賭大小,每把贏錢概率百分之五十的那種,一把一萬。
第一天,他的運氣很好,連贏一百把,賺了一千萬。第二天,他帶著一千一百萬繼續賭,運氣很不好。連輸一百一十把,一千一百萬輸光,回台灣搬磚頭。
在他去澳門的那天晚上,我爺爺托夢告訴我,我朋友的一百萬最後會全部輸光,讓我不要重蹈覆轍。我靈機一動,我也拿一百萬和朋友坐同一桌賭,每把下同樣的錢和他反著買不就能賺一百萬嗎,所謂零和遊戲,這是一道送分題呀。於是我也借了一百萬和朋友一起到澳門。第一天,連輸十把,一百萬輸光。先一步回台灣搬磚。
大家有看懂意思嗎?歷史上,散戶賠到脫褲子這件事總是不斷重演,以後也會是,但這完全不代表跟著散戶對做就能賺大錢,因為你就是錢不夠多,才變成散戶,散戶沒有本錢跟散戶對做,只有大戶才可以。
賭大小概率 在 賭Sir【杜氏數學】HermanToMath Youtube 的精選貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
杜氏數學 國際官方網站 http://www.hermantomath.com
----------
Title:
賭場VS賭波VS賭馬,如何預測賽果?
----------
Subtitle:
天有不測之風雲,何以天文台能夠預測天氣?
----------
Script:
賭場、賭波和賭馬,形式上非常不同:
賭局 賠率 機率
賭場遊戲 己知 己知
足球博彩 己知 未知
賽馬博彩 未知 未知
由於形式不同,戰術亦截然不同。但戰術不同,目標卻始終如一:「正EV」。只要EV是正數,賭博便佔優。重溫一次EV的計算方法:
EV = 淨贏注 × 贏錢機率 - 淨輸注 × 輸錢機率
換言之,賭場遊戲的賠率固定、機率固定,因此EV都是固定,而且一般來說都是固定的負數(因為對賭場來說便是正數)。對賭客來說,除非遇上賭場犯錯,例如推出新遊戲,規則上容許賭客獲得正EV#,否則於賭場遊戲長賭必敗無疑。
#《爽爆:全職賭徒鑽賭場漏洞 月贏80萬 》
http://hk.apple.nextmedia.com/news/art/20121017/18042618
至於足球博彩,雖然是固定賠率制,但由於足球比賽變化莫測,不似賭場遊戲純粹訴諸物理力學,因此機率是未知之數,自然EV也是未知之數。只要有一定方法,便有可能取得正EV。
或許你會問:既然足球比賽變化莫測,一個不慎擺烏龍、一個不智領紅牌、一個球證誤判越位入球等,都會影響賽果,試問又怎能夠計算呢?
這個問題就等如天有不測之風雲,天文台為何能夠預測天氣呢?當然間中亦有錯判,但雖不中亦不遠矣,這就是數學的力量。其實博彩公司訂立賠率的時候,都會先以數學計算賽果機率,然後輕微調低作抽水。由此可見,只要比博彩公司計算機率計算得更準確,便能夠於賭局中佔有上風。
舉個例,朋友和你在街頭足球場看見兩隊業餘球隊比賽,朋友見一隊年輕力壯,另一隊白髮蒼蒼,於是開盤:「年輕隊1賠0.8、和局1賠2.1、元老隊1賠3.1」,這個時候,你發現元老隊球員原來是前甲組職業球員,年輕隊則是自己兒子的球隊,而你知道自己的兒子和他的朋友是乒乓球隊友,根本不懂得踢足球,因此,你預算元老隊的勝率遠超年輕隊。明顯地,這個賭局是你佔了上風。
換言之,這是一場資訊(Information)戰,擁有更多資訊的佔優。為什麼?因為資訊較多的一方,更能較準確地計算賽局機率(這也是馬評家晨早起床看晨操的目的,獲取一般馬迷不知道的資訊)。於上述例子,雖然不涉及數學運算,但仍算是一種粗略估算。當然,面對博彩公司,粗略估算是不足夠的,你需要比博彩公司更精確的機率計算,而方法就是:建立一個數學模型(Mathematical Model)。
提供重要資訊
計算預測結果
你先從現實世界搜集重要資訊,例如對賽兩隊的近績、對賽往績、預計陣容等,而對賽果影響力較小的,可選擇性地抽取,例如天氣溫度、領隊教練、花邊新聞等。然後,將這些資訊輸入到電腦程式,並由電腦進行運算,得出答案後,把電腦程式輸出的賽果,視之為對現實世界的預測賽果。程序大致如此,天文台預測天氣也是透過數學建模(Mathematical Modeling),量化重要的氣候現象,來預測未來天氣。
然而,電腦程式是如何使用現實資訊的呢?首先預設一些公式,然後匯入大量球賽歷史資訊,例如上述的近績、對賽往績、甚至天氣溫度等,從而利用公式計算預測賽果,將它與真實賽果比較,便可得知每一條公式的預測準繩度,繼而從中選出預測力最高的公式,加以使用,計算EV。
最常見的疑問是:「公式的準繩度源於球賽歷史資訊,包括真實賽果,準繩度自然必被高估,試問對比真實賽果又有什麼意思?」
這個問題可以利用一個名叫回溯測試(Backtesting)的小聰明手法,匯入資訊時,只匯入一部份,留下剩餘的部份歷史賽事當作未來賽事,執行公式模擬投注。
舉例說,你找了1000場相關賽事,你可匯入首900場,來挑選公式,然後用尾100場作模擬投注,計算出使用公式的EV。
賽馬博彩也是透過數學建模,你除了需要計算機率之外,你也要模擬最後賠率。因為賽馬博彩是實行彩池制(Pari Mutuel,又稱同注分彩法),賠率會因應投注額的分佈而時刻調整。假設你投注的時候,一號馬是1賠10,臨開閘的時候可以變了1賠3,到最後派彩可以變了1賠6,而你最後獲得的賠率,就是根據最後派彩,而不是你投注的時候。
由此可見,如使用數學建模,賭馬比賭波容易獲得正EV。主要原因如下:
賽馬是賭客與賭客之間的對賭。實施彩池制,博彩公司抽取投注額的手續費獲利,無論賽果如何,博彩公司已經賺了,派彩只是用輸家的注碼賠給贏家。只要有大量非理性的賭客,賭局佔優的機率便會較高,就好像到麻雀館打麻雀,遇著三位菜鳥,贏面自然較高。
相反,足球博彩是固定賠率制,是莊家和賭客直接對賭,莊家自然費盡工夫調整盤口,為公司獲得正EV,博彩公司正EV,即是賭客負EV。要從足球博彩中使用數學模型取勝,就得比博彩公司計算得更精確才有機會成功。
實際操作上,數學模型的構造當然比以上描述複雜得多,例如考慮的因素、各個因素的比重、賽事的數量,甚至注碼大小等,都絕不簡單。然而,原理大致上就是如此。
這一堂不教任何數學建模的方法,因為所需要的數學水平起碼要有大學程度,如想擊敗賭場,開始學習數學吧,有心不怕遲,只要沒有了考試的壓力,學習數學其實很愉快,也很輕鬆,或許最後你做不了賭神,卻成了數學家呢!
就算不打算學習數學,也希望你明白背後的原理,不致於大庭廣眾之下獻醜,不會再說由於隨機因此無法預測,而別人提起數學模型的時候,你起碼聽得明白。
天氣預測的科學發展已成熟多年,人類掌控隨機事件的能力已遠超一般人所想。天文台雖然無法完美預測每一秒的天氣變化,但大概準確,已造福人群;同樣地,賭局預測,雖然不會場場中,但只要大概準確,使贏的多過輸的,已足夠使賭客獲利。數學並非萬能,但只要適當地使用,絕對是強大的武器。
Summary
賭場遊戲的賠率和機率都是固定。
足球博彩實行固定賠率制(Fixed-odds betting),賠率固定,但機率不知。
賽馬博彩實行彩池制,賠率不定,機率亦不知。
賽果預測的原理,與天氣預測的原理大致相同。
將現實世界重要資訊,匯入數學模型計算,用結果預測現實世界賽果。
把部份歷史賽事當作未來賽事,用以驗證數學程式的準繩度。
天氣預測無須分秒不差,賭局預測亦無須場場中,只要正EV就可以。
Terminology
資訊(Information)
數學模型(Mathematical Model)
數學建模(Mathematical Modeling)
回溯測試(Backtesting)
彩池制(Pari Mutuel)
固定賠率制(Fixed-odds betting)
-----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
----------
精選系列節錄:
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo
賭大小概率 在 賭Sir【杜氏數學】HermanToMath Youtube 的最讚貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
杜氏數學 國際官方網站 http://www.hermantomath.com
DSE 數學【速效課程】 訂購詳情 http://hermantomath.skx.io
----------
精選系列節錄:
《數學 DSE 狀元神技秘笈》系列
https://www.youtube.com/watch?v=1mVTSqpY-9Q&list=PL_CM4U5au2k1xNBwQFtwjDGYHKvI6LkEe&index=5
《攞分唔使識得計》系列 (以 DSE Maths PaperII 為骨幹的免費課程)
https://www.youtube.com/watch?v=u9lM-7a4ivQ&list=PL_CM4U5au2k1xdQroee0QXyNUJ3n5QE6L&index=1
《名校試題》系列
https://www.youtube.com/watch?v=UY8pxw-OC4E&index=1&list=PL_CM4U5au2k1n86kvgdkPBDqchYdsciCs
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo
----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2
賭大小概率 在 賭Sir【杜氏數學】HermanToMath Youtube 的精選貼文
杜氏數學 官方網站: http://www.HermanToMath.com
賭Sir 幫你急救 DSE 數學: https://HermanToMath.skx.io
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
?著作:《YouTuber新手到網紅》、《5**數學男人嫁得過》、《碌葛男人嫁得過》、《賭波男人嫁得過》(獲Google嚴選2018年度50大最佳書籍)
----------
賭Sir收集著數派街坊:
❤️YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
?報讀初班 $600 (原價$800):https://www.youtubergo.com/payment/b-hermantomath-0600.html
?報讀初班+中班 $1500 (原價$1800):https://www.youtubergo.com/payment/bm-hermantomath-1500.html
官方網頁:https://www.youtubergo.com/
❤️無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
❤️Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
❤️Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
----------
杜氏數學 國際官方網站 http://www.hermantomath.com
DSE 數學【速效課程】 訂購詳情 http://hermantomath.skx.io
----------
精選系列節錄:
《數學 DSE 狀元神技秘笈》系列
https://www.youtube.com/watch?v=1mVTSqpY-9Q&list=PL_CM4U5au2k1xNBwQFtwjDGYHKvI6LkEe&index=5
《攞分唔使識得計》系列 (以 DSE Maths PaperII 為骨幹的免費課程)
https://www.youtube.com/watch?v=u9lM-7a4ivQ&list=PL_CM4U5au2k1xdQroee0QXyNUJ3n5QE6L&index=1
《名校試題》系列
https://www.youtube.com/watch?v=UY8pxw-OC4E&index=1&list=PL_CM4U5au2k1n86kvgdkPBDqchYdsciCs
《賭Sir數學戒賭》糸列
https://www.youtube.com/watch?v=dhL-dRcIN5I&index=1&list=PL_CM4U5au2k1cfK2zSph8XOLqIjOPQmvo
----------
杜氏數學 Herman To Math 考試戰績:
A ── 會考 Math 數學
A ── 會考 Additional Math 附加數學
A ── 高考 Pure Math 純粹數學
A ── 高考 Applied Math 應用數學
5** ── DSE Math 數學
5** ── DSE M1 數學延伸部分(一)
5** ── DSE M2 數學延伸部分(二)
A ── IAL Core Math 1 2
A ── IAL Core Math 3 4
A ── IAL Further Pure Math 1
A ── IAL Mechanics 2
A ── IAL Mechanics 3
A ── IAL Statistics 1
A ── IAL Statistics 2