【mRNA疫苗臨床試驗95%有效! mRNA疫苗會是COVID-19的救世主嗎?】:發表在新英格蘭醫學期刊(NEJM)上的兩篇論文提到【註1】,兩個mRNA疫苗臨床研究分別收案3萬多人與4萬多人,在打完疫苗之後的兩個月追蹤當中,施打疫苗讓COVID-19感染率減少了95%!【註3】
在本文開始前,在此先簡述說明一下「分子生物學的中心法則」,建立對DNA、RNA、mRNA的基礎認識。
■分子生物學的中心法則 (central dogma)(圖1)
用最簡單最直接的方式來描述的話,生物體的遺傳訊息是儲存在細胞核的DNA中,每次細胞分裂時,DNA可以複製自己 (replication),因而確保每一代的細胞都帶有同樣數量的DNA。
而當細胞需要表現某個基因時,會將DNA的訊息轉錄 (transcribe) 到RNA上頭,再由RNA轉譯 (translate) 到蛋白質,而由蛋白質執行身體所需要的功能。這也就是所謂的分子生物學的中心法則 (central dogma)。
對於最終會製造成蛋白質的基因來說,RNA是扮演了中繼的角色,也就是說遺傳訊息本來儲存在 DNA 上頭,然後經過信使 RNA (messenger RNA, mRNA) 的接棒,最後在把這個訊息傳下去,製造出蛋白質。【註4】
■冠狀病毒的基因組由RNA構成
RNA不如DNA穩定,複製過程容易出錯,因此一般RNA病毒的基因組都不大。但冠狀病毒鶴立雞群,基因組幾乎是其他RNA病毒的三倍長,是所有RNA病毒中最大、最複雜的種類。
冠狀病毒還能以重組RNA的方式,相當頻繁地產生變異,但是基因組中位在最前端的RNA序列相對穩定,因為其中有掌控病毒蛋白酶與RNA聚合酶的基因,一旦發生變異,冠狀病毒很可能無法繼續繁衍。
目前抗病毒藥物的研發策略之一,正是設法抑制病毒RNA複製酶(RdRp)。而最前端的RNA序列也是現階段以反轉錄聚合酶連鎖反應(RT-PCR)檢驗新冠病毒時鎖定的目標。中央研究院院士賴明詔表示,不同病毒的核酸序列當中還是有各自的獨特變異,正好用來區分是哪一種冠狀病毒。【註5】
■SARS-CoV-2是具有3萬個鹼基的RNA病毒
中國科學院的《國家科學評論》(National Science Review)期刊【註2】,2020年3月發表《關於SARS-CoV-2的起源和持續進化》論文指出,現已發生149個突變點,並演化出L、S亞型。
病毒會變異的原因可略分成兩種:
▶一是「自然演變」
冠狀病毒是RNA病毒,複製精準度不如DNA病毒精準度高,只要出現複製誤差,就是變異。
▶二是「演化壓力」
當病毒遇到抗體攻擊,就會想辦法朝有抗藥性的方向演變,找出生存之道。【註6】
■mRNA 疫苗是一種新型預防傳染病的疫苗
近期,美國莫德納生物技術公司(Moderna)與輝瑞公司(Pfizer),皆相繼宣布其COVID-19 mRNA疫苗的研究成果。
莫德納公司在2020年11月30日宣布他們的mRNA-1273疫苗在三期臨床試驗達到94.1%(p<0.0001)的超高保護力,受試者中約四成為高風險族群(患糖尿病或心臟病等),7000人為高齡族群(65歲以上),另也包含拉丁裔與非裔族群(報告中未提到亞洲裔)。
傳統大藥廠輝瑞公司,亦在美國時間11月18日發佈令人振奮的新聞稿:他們的RNA疫苗(BNT162b2)三期臨床試驗已達設定終點,保護力高達95%(p<0.0001)。該試驗包含了4萬名受試者,其中約有四成受試者為中高齡族群(56~85歲),而亞洲裔受試者約占5%。
■mRNA疫苗為什麼可以對抗病毒?
為什麼mRNA疫苗會有用?就讓我們先從疫苗的原理「讓白血球以為有外來入侵者談起」。
在過往,疫苗策略大致上可分為兩種:
● 將病毒的屍體直接送入人體,如最早的天花疫苗(牛痘,cowpox)、小兒麻痺疫苗(沙克疫苗,polio vaccines)、肺結核疫苗(卡介苗,Bacillus Calmette-Guérin, BCG)以及流感疫苗等。
✎補正
卡介苗 BCG(Bacillus Calmette-Guerin vaccine) :卡介苗是一種牛的分枝桿菌所製成的活性疫苗,經減毒後注入人體,可產生對結核病的抵抗力,一般對初期症候的預防效果約85%,主要可避免造成結核性腦膜炎等嚴重併發症。
▶以流感疫苗為例,科學家通常先讓病毒在雞胚胎大量繁殖後,再將其殺死,也有部分藥廠會再去除病毒屍體上的外套膜(envelope),進一步降低疫苗對人體可能產生的副作用後,再製成疫苗。
● 將病毒的蛋白質面具,裝在另一隻無害的病毒上再送入人體,如伊波拉病毒(Ebola virus disease, EVD)疫苗等。
▶以伊波拉病毒疫苗為例,科學家會剪下伊波拉病毒特定的醣蛋白(glycoproteins)基因,置換入砲彈病毒(Rhabdoviridae)的基因組中,使砲彈病毒長出伊波拉病毒的醣蛋白面具。
上述例子都是將致命病毒的部分殘肢送入人體,當病毒被樹突細胞(dendritic cells)或巨噬細胞(macrophages)等抗原呈現細胞(antigen-presenting cell, APC)吃掉後,再由細胞將病毒殘肢吐出給其他白血球,進而活化整個免疫系統,然而,mRNA疫苗採取了更奇詭的路數 - 「讓人體細胞自己生產病毒殘肢!」
■mRNA 疫苗設計原理(圖2)
將人工設計好可轉譯出病毒蛋白質片段的mRNA,包裹於奈米脂質顆粒中,送入淋巴結組織內,奈米脂質顆粒會在細胞中釋出RNA,使人體細胞能自行產出病毒蛋白質片段,呈現給其他白血球,活化整個免疫系統。
■mRNA疫苗設計流程(圖3)
1「科學家獲得病毒的全基因序列」
因社群媒體的發達、公衛專家、病毒研究者以及期刊編輯的努力,這次的COVID-19病毒序列很快的被發表;中國北京疾病管制局的研究團隊,挑選了九位患者,其中有八位,都有前往華南海鮮市場的病史,並從這些患者採取了呼吸道分泌物的檢體,運用次世代定序 (NGS,Next Generation Sequencing) 的方式,拼湊出新型冠狀病毒全部與部分的基因序列。並陸續將這些序列資料,提供給全世界的病毒研究者交互確認,修正序列的錯誤。
2「解析病毒基因群裡所有的功能,選定目標蛋白質(Covid-19病毒棘蛋白質)」
以冠狀病毒為例,通常會選病毒表面的棘狀蛋白(spike protein)。因為棘蛋白分布於病毒表面,可作為白血球的辨識目標,同時病毒需透過棘蛋白和人體細胞受體(receptor)結合,進而撬開人體細胞,因此以病毒繁殖的策略而言,此處的蛋白質結構較穩定。
3「製造要送入人體的mRNA,挑選出會製造棘蛋白的mRNA進行修飾」
挑選會轉譯(translation)出目標蛋白質的mRNA,並進行各項修飾,以提高該人工mRNA在細胞裡被轉譯成蛋白質的效率。如:輝瑞的mRNA疫苗(BNT162b1)選用甲基化(methylation)後的偽尿嘧啶(1-methyl-pseudouridine)取代mRNA裡的原始尿嘧啶(uracil, U),有助於提升mRNA的穩定性,並提高mRNA被轉譯成病毒棘蛋白的效率。
4「將人工mRNA裹入特殊載體,將mRNA包裹入特殊載體顆粒中」
因為mRNA相當脆弱且容易被分解,因此需要對載體進行包裹和保護。然而,有了載體後,接踵而來的問題是「該怎麼送到正確的位置(淋巴結)?」。而輝瑞和莫德納不約而同地都選用了奈米脂質顆粒(lipid nanoparticles)包裹mRNA載體,奈米脂質顆粒通常由帶電荷的脂質(lipid)、膽固醇(cholesterol)或聚乙二醇(polyethylene glycol, PEG)修飾過的脂質等組成,可以保護RNA,並將mRNA送到抗原呈現細胞豐富的淋巴結組織。
5「包覆mRNA的奈米脂質顆粒,注射在肌肉組織」
使其能循環到淋巴結,被淋巴結中的細胞吃掉。奈米脂質顆粒釋放出mRNA,使細胞產出病毒蛋白質片段,進而呈現給其他白血球並活化整個免疫系統。【註7】
mRNA可將特定蛋白質的製造指示送至細胞核糖體(ribosomes)進行生產。mRNA 疫苗會將能製造新冠病毒棘狀蛋白的 mRNA 送至人體內,並不斷製造棘狀蛋白,藉此驅動免疫系統攻擊與記憶此類病毒蛋白,增加人體對新冠病毒的免疫力,最終 mRNA 將被細胞捨棄。
值得注意的是,由於 mRNA 疫苗並無攜帶所有能製造新冠病毒的核酸(nucleic acid),且不會進入人體細胞核,所以施打疫苗無法使人感染新冠病毒。
Pfizer、BioNTech 研發的 BNT162b2 是美國第 1 個取得 EUA 的 mRNA 疫苗,施打對象除成年人,還包含 16 歲以上非成年人。且相比 Moderna 製造的 mRNA-1273 疫苗,患者施打第 2 劑 BNT162b2 的副作用較輕微。
Moderna 也不遑多讓,mRNA-1273 於 2020 年 12 月中取得 EUA,且具備在 -20°C 儲存超過 30 天的優勢。在臨床試驗中,使用 mRNA-1273 的 196 位受試者皆無演變成重度 COVID-19,相較安慰劑組中卻有 30 人最終被標為重度 COVID-19 患者。【註8】
為了觸發免疫反應,許多疫苗會將一種減弱或滅活的細菌注入我們體內。mRNA疫苗並非如此。相反,該疫苗教會我們的細胞如何製造出一種蛋白質,甚至一種蛋白質片段,從而觸發我們體內的免疫反應。如果真正的病毒進入我們的身體,這種產生抗體的免疫反應可以保護我們免受感染。【註9】
【Reference】
▶DNA的英文全名是Deoxyribonucleic acid,中文翻譯為【去氧核糖核酸】
▶RNA 的英文全名是 Ribonucleic acid,中文翻譯為【核糖核酸】。
1.來源
➤➤資料
∎【註1】
Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2020 Dec 30:NEJMoa2035389. doi: 10.1056/NEJMoa2035389. Epub ahead of print. PMID: 33378609; PMCID: PMC7787219.
https://www.nejm.org/doi/full/10.1056/NEJMoa2035389
Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10. PMID: 33301246; PMCID: PMC7745181.
https://www.nejm.org/doi/full/10.1056/NEJMoa2034577
∎【註2】
Xiaoman Wei, Xiang Li, Jie Cui, Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China, National Science Review, Volume 7, Issue 2, February 2020, Pages 239–242, https://doi.org/10.1093/nsr/nwaa009
∎【註3】
▶蘇一峰 醫師:https://www.facebook.com/bsbipoke
▶中時新聞網 「mRNA疫苗臨床試驗95%有效 醫:哪國搶到就能結束比賽」:
https://www.chinatimes.com/realtimenews/20210104004141-260405?chdtv
∎【註4】
( 台大醫院 National Taiwan University Hospital-基因分子診斷實驗室)「DNA、RNA 以及蛋白質」:https://www.ntuh.gov.tw/gene-lab-mollab/Fpage.action?muid=4034&fid=3852
∎【註5】
《科學人》粉絲團 - 「新冠病毒知多少?」:https://sa.ylib.com/MagArticle.aspx?id=4665
∎【註6】
(報導者 The Reporter)【肺炎疫情關鍵問答】科學解惑 - 10個「為什麼」,看懂COVID-19病毒特性與防疫策略:https://www.twreporter.org/a/covid-19-ten-facts-ver-2
∎【註7】
科學月刊 Science Monthly - 「讓免疫系統再次偉大!mRNA疫苗會是COVID-19的救世主嗎?」:https://www.scimonth.com.tw/tw/article/show.aspx?num=4823&page=1
∎【註8】
GeneOnline 基因線上 「4 大 COVID-19 疫苗大解密!」 :https://geneonline.news/index.php/2021/01/04/4-covid-vaccine/
∎【註9】
(CDC)了解mRNA COVID-19疫苗
https://chinese.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html
➤➤照片
∎【註4】:
圖1、分子生物學中心法則
∎【註7】:
圖2:mRNA 疫苗設計原理
圖3:mRNA 疫苗設計流程圖
2. 【國衛院論壇出版品 免費閱覽】
▶國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽:
https://forum.nhri.org.tw/publications/
3. 【國衛院論壇學術活動】
▶https://forum.nhri.org.tw/events/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #疾病管制署 #COVID-19 #mRNA疫苗 #新英格蘭醫學醫學期刊 #NEJM
衛生福利部 / 疾病管制署 - 1922防疫達人 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇
粒線體dna突變所造成的疾病以何種方式遺傳 在 Jason肌力體能 x 不只是訓練 Facebook 的最佳貼文
【為何我們需要提升粒線體的功能呢?】
▲不管是一般人還是競技運動選手,又或者是老年人延緩老化或是希望能提高懷孕機率的夫妻都應該了解
.
提升粒線體功能與數量的方式有許多,一般人較為熟知的是有氧運動,也就是長時間耐力型的運動訓練,但也有Jason上次所提到的HIIT(高強度間歇訓練),至於提升粒線體功能有那些好處呢?Jason會就我所知道的部份分享給各位,如下:
.
(一)、提升有氧代謝能力:
粒線體是細胞內有氧代謝的主要場所,細胞內約90%的能量ATP都由粒線體產生,而為了產生ATP,粒線體必須消耗氧氣,而細胞內90%的氧分子都為粒線體所使用。當我們長時間從事非激烈(氧氣供應充足)的有氧運動時,肌肉收縮所需要的ATP是來自葡萄糖與脂肪酸在粒線體進行的檸檬酸循環與氧化磷酸化反應。
所以許多人減肥都會利用有氧運動的方式,除了不激烈的耐力運動較容易上手之外,也因為看中它主要代謝的來源大多為脂肪。
.
(二)、提升ATP-PC系統的恢復能力:
有些人會問為什麼屬於短時間爆發產能的磷酸系統會需要粒線體? 其實這是屬於間接而不是直接的概念,因為在進行反覆多趟的速度訓練或是其他短時間爆發性的反覆訓練時很重視的是趟與趟之間的恢復能力,若恢復能力不佳,很容易降低訓練效果。先前的文章有提到過,在進行最大速度訓練時,後段趟次的秒數衰退率必須低於5%,才能維持訓練的品質。而粒線體進行氧化磷酸化的過程中會透過偶聯的方式提供ATP-PC系統所需的能量,達到能量再生的效果。
所以短跑選手或是其他爆發力型的選手可以利用高強度間歇訓練的方式提升粒線體功能,可減少長距離耐力型的訓練。
.
(三)、可能有助於預防老化:
過去許多研究證實定時定量的運動,能增進免疫系統及認知能力,改善睡眠、延長壽命,還有機會預防老化,但其中真正的機制是甚麼則還不是十分明朗。
《Cell Metabolism》日前刊登美國梅約診所(Mayo Clinic)的最新發表,研究團隊發現運動有助預防老化的秘密,可能與粒線體(mitochondria)有關。運動能夠鼓勵細胞製造更多與粒線體及肌肉生長相關基因的RNA副本。根據實驗結果可以發現,高強度間歇運動訓練有機會反轉老化相關的粒線體功能退化。
.
(四)、改善不孕症的其中一種治療方式:
對女性而言,20歲的卵子跟40歲的卵子,外觀上並沒有任何差異,但是,在40歲的卵子很可能受精後中止細胞分裂,使得受精卵無法發育成健全的胚胎。
會中止細胞分裂的原因在於能量不足,因此,不孕症的人可試圖活化卵子的粒線體達到受孕後,受精卵成功發育成胎兒。
但是男性的精子活動力也可能與精子的尾部中段區域的特化粒線體有關,所以男性也有可能透過運動訓練的方式改善精子活動力,所以一些醫生會建議有不孕狀況的夫妻可以一起運動,除了能增加彼此相處的時間也能放鬆心情,另外就是透過運動的方式提升夫妻倆體內粒線體的功能喔!
.
.
不關是男性還是女性,粒線體的基因都只接受母方的遺傳,父親的粒線體並不會傳給兒子,而其中有兩種理論解釋:
(1).若父、母雙方的粒線體皆可進入同一細胞,因資源有限而相互競爭,可能造成細胞的損失。
(2).精子因游泳運動,粒線體生產ATP的過程中產生過氧化物或其他代謝產物,造成粒線體基因的危害與突變,這些有缺陷的粒線體若進入受精卵, 將降低受精卵能量代謝的效能,甚至產生疾病。
.
.
所以不管怎樣就是要訓練啦! 準備好今天要做什麼樣的訓練了嗎? 還是要準備為了什麼目標而訓練呢? 快開始吧! GOGOGO!!!
有訓練上的問題都可以諮詢Jason,我會盡我所能提供解答喔^^
.
#Jason肌力與體能訓練
#我與訓練的熱戀期
#提升粒線體功能
.
.
參考資料:
Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans
Matthew M. Robinson, Surendra Dasari, Adam R. Konopka, Matthew L. Johnson, S. Manjunatha, Raul Ruiz Esponda, Rickey E. Carter, Ian R. Lanza, K. Sreekumaran Nair3,
蔡任圃(民 99)。你變了,粒線體 DNA。科學月刊,483,226-229
穿越時空-Power粒線體 Facebook專頁
林正常、林貴福、徐台閣、吳慧君譯(2005)運動生理學—體 適能與運動表現的理論與應用第4版,台北市:藝軒圖書出版社。
Interaction Fitness SSE 競技運動初級講座
郭朝禎 臺灣大學醫學院解剖學暨細胞生物學研究所 科學發展 2011年10月,466期
圖片來源: 泛科學 http://pansci.asia/wp-content/uploads/2014/06/1-560x422.jpg (擷取自臉書專頁 穿越時空-Power粒線體)
粒線體dna突變所造成的疾病以何種方式遺傳 在 李岳倫癌症/科學素養研究室- 揭開粒線體基因缺陷遺傳子代的謎 ... 的美食出口停車場
由於粒線體基因傳遞乃是母系遺傳,突變缺陷的基因在不利情況下,如何在種群 ... ATP合成障礙、能量來源不足而導致疾病,帕金森氏症、肌肉無力症、心臟 ... ... <看更多>
粒線體dna突變所造成的疾病以何種方式遺傳 在 B4橫書單欄 - 台東高中 的美食出口停車場
解析:若答案為(B)基因缺失或(C)基因插入,則分別會造成乙種蜥蜴的基因序列往前或往後 ... DNA含有去氧核糖,RNA含有核糖;(D)細胞質中也有DNA分布,如粒線體中。 ... <看更多>