NT370 特價中
這個實用的課程將使你能夠構建簡單、可靠和高效的軟體,使用 Go 提供基本到高階的概念。
課程超過23個小時,包括160多個講座、超過163個程式碼範例、章節作業和一個最終的作業。
重點是審查程式碼範例、圖表和白板。
課程逐漸從基礎課程轉向高階課題,最終以最後一項作業結束。
https://softnshare.com/go-programming-by-example/
同時也有2部Youtube影片,追蹤數超過7萬的網紅在地上滾的工程師 Nic,也在其Youtube影片中提到,對於設計模式的學習有多方派系持不同意見,但仔細去思考,會發現設計模式的存在是避免自己發明愚蠢的設計在已經常出現的問題上,在日新月異的科技進步下,隨著商業邏輯更加複雜,軟體工程師所遭遇到的問題也一次比一次還難 Design Pattern 的存在是幫助思考,避免不必要的協作災難,只要能懂得這點並融會...
程式碼範例 在 Taipei Ethereum Meetup Facebook 的最讚貼文
📜 [專欄新文章] ZKP 與智能合約的開發入門
✍️ Johnson
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
這篇文章將以程式碼範例,說明 Zero Knowledge Proofs 與智能合約的結合,能夠為以太坊的生態系帶來什麼創新的應用。
本文為 Tornado Cash 研究系列的 Part 2,本系列以 tornado-core 為教材,學習開發 ZKP 的應用,另兩篇為:
Part 1:Merkle Tree in JavaScript
Part 3:Tornado Cash 實例解析
Special thanks to C.C. Liang for review and enlightenment.
近十年來最強大的密碼學科技可能就是零知識證明,或稱 zk-SNARKs (zero knowledge succinct arguments of knowledge)。
zk-SNARKs 可以將某個能得出特定結果 (output) 的計算過程 (computation),產出一個證明,而儘管計算過程可能非常耗時,這個證明卻可以快速的被驗證。
此外,零知識證明的額外特色是:你可以在不告訴對方輸入值 (input) 的情況下,證明你確實經過了某個計算過程並得到了結果。
上述來自 Vitalik’s An approximate introduction to how zk-SNARKs are possible 文章的首段,該文說是給具有 “medium level” 數學程度的人解釋 zk-SNARKs 的運作原理。(可惜我還是看不懂 QQ)
本文則是從零知識證明 (ZKP) 應用開發的角度,結合電路 (circuit) 與智能合約的程式碼來說明 ZKP 可以為既有的以太坊智能合約帶來什麼創新的突破。
基本上可以謹記兩點 ZKP 帶來的效果:
1. 擴容:鏈下計算的功能。
2. 隱私:隱藏秘密的功能。
WithoutZK.sol
首先,讓我們先來看一段沒有任何 ZKP 的智能合約:
這份合約的主軸在 process(),我們向它輸入一個秘密值 secret,經過一段計算過程後會與 answer 比對,如果驗證成功就會改寫變數 greeting 為 “answer to the ultimate question of life, the universe, and everything”。
Computation
而計算過程是一個簡單的函式:f(x) = x**2 + 6。
我們可以輕易推出秘密就是 42。
這個計算過程有很多可能的輸入值 (input) 與輸出值 (output):
f(2) = 10
f(3) = 15
f(4) = 22
…
但是能通過驗證的只有當輸出值和我們存放在合約的資料 answer 一樣時,才會驗證成功,並執行 process 的動作。
可以看到有一個 calculate 函式,說明這份合約在鏈上進行的計算,以及 process 需要輸入參數 _secret,而我們知道合約上所有交易都是公開的,所以這個 _secret 可以輕易在 etherscan 上被看到。
從這個簡單的合約中我們看到 ZKP 可以解決的兩個痛點:鏈下計算與隱藏秘密。
Circuits
接下來我們就改寫這份合約,加入 ZKP 的電路語言 circom,使用者就能用他的 secret 在鏈下進行計算後產生一個 proof,這 proof 就不會揭露有關 secret 的資訊,同時證明了當 secret 丟入 f(x) = x**2 + 6 的計算過程後會得出 1770 的結果 (output),把這個 proof 丟入 process 的參數中,經過 Verifier 的驗證即可執行 process 的內容。
有關電路 circuits 的環境配置,可以參考 ZKP Hello World,這裡我們就先跳過去,直接來看 circom 的程式碼:
template Square() { signal input in; signal output out; out <== in * in;}template Add() { signal input in; signal output out; out <== in + 6;}template Calculator() { signal private input secret; signal output out; component square = Square(); component add = Add(); square.in <== secret; add.in <== square.out; out <== add.out;}component main = Calculator();
這段就是 f(x) = x**2 + 6 在 circom 上的寫法,可能需要時間去感受一下。
ZK.sol
circom 寫好後,可以產生一個 Verifier.sol 的合約,這個合約會有一個函式 verifyProof,於是我們把上方的合約改寫成使用 ZKP 的樣子:
我們可以發現 ZK 合約少了 calculate 函式,顯然 f(x) = x**2 + 6 已經被我們寫到電路上了。
snarkjs
產生證明的程式碼以 javascript 寫成如下:
let { proof, publicSignals } = await groth16.fullProve(input, wasmPath, zkeyPath);
於是提交 proof 給合約,完成驗證,達到所謂鏈下計算的功能。
最後讓我們完整看一段 javascript 的單元測試,使用 snarkjs 來產生證明,對合約的 process 進行測試:
對合約來說, secret = 42 是完全不知情的,因此隱藏了秘密。
publicSignals
之前不太清楚 publicSignals 的用意,因此在這裡特別說明一下。
基本上在產生證明的同時,也會隨帶產生這個 circom 所有的 public 值,也就是 publicSignals,如下:
let { proof, publicSignals } = await groth16.fullProve(input, wasmPath, zkeyPath);
在我們的例子中 publicSignals 只有一個,就是 1770。
而 verifyProof 要輸入的參數除了 proof 之外,也要填入 public 值,簡單來說會是:
const isValid = verifyProof(proof, publicSignals);
問題來了,我們在設計應用邏輯時,當使用者要提交參數進行驗證的時候,publicSignals 會是由「使用者」填入嗎?或者是說,儘管是使用者填入,那它需不需要先經過檢查,才可以填入 verifyProof?
關鍵在於我們的合約上存有一筆資料:answer = 1770
回頭看合約上的 process 在進行 verifyProof 之前,必須要檢查 isAnswer(publicSignals[0]):
想想要是沒有檢查 isAnswer,這份合約會發生什麼事情?
我們的應用邏輯就會變得毫無意義,因為少了要驗證的答案,就只是完成計算 f(42) = 1770,那麼不論是 f(1) = 7 或 f(2) = 10,使用者都可以自己產生證明與結果,自己把 proof 和 publicSignals 填入 verifyProof 的參數中,都會通過驗證。
至此可以看出,ZKP 只有把「計算過程」抽離到鏈下的電路,計算後的結果仍需要與鏈上既有的資料進行比對與確認後,才能算是有效的應用 ZKP。
應用邏輯的開發
本文主要談到的是 zk-SNARKs 上層應用邏輯的開發,關於 ZKP 的底層邏輯如上述使用的 groth16 或其他如 plonk 是本文打算忽略掉的部分。
從上述的例子可以看到,即使我們努力用 circom 實作藏住 secret,但由於計算過程太過簡單,只有 f(x) = x**2+6,輕易就能從 answer 反推出我們的 secret 是 42,因此在應用邏輯的開發上,也必須注意 circom 的設計可能出了問題,導致私密訊息容易外洩,那儘管使用再強的 ZKP 底層邏輯,在應用邏輯上有漏洞,也沒辦法達到隱藏秘密的效果。
此外,在看 circom 的程式碼時,可以關注最後一個 template 的 private 與 public 值分別是什麼。以本文的 Calculator 為例,private 值有 secret,public 值有 out。
另外補充:
如果有個 signal input 但它不是 private input,就會被歸類為 public。
一個 circuit 至少會有一個 public,因為計算過程一定會有一個結果。
最後,在開發的過程中我會用 javascript 先實作計算過程,也可以順便產出 input.json,然後再用 circom 語言把計算過程實現,產生 proof 和 public 後,再去對照所有 public 值和 private 值,確認是不是符合電路計算後所要的結果,也就是比較 javascript 算出來的和 circom 算出來的一不一樣,如果不一樣就能確定程式碼是有 bug 的。
參考範例:https://github.com/chnejohnson/circom-playground
總結
本文的程式碼展現 ZKP 可以做到鏈下計算與隱藏秘密的功能,在真實專案中,可想而知電路的計算過程不會這麼單純。
會出現在真實專案中的計算像是 hash function,複雜一點會加入 Merkle Tree,或是電子簽章 EdDSA,於是就能產生更完整的應用如 Layer 2 擴容方案之一的 ZK Rollup,或是做到匿名交易的 Tornado Cash。
本文原始碼:https://github.com/chnejohnson/mini-zkp
下篇文章就來分享 Tornado Cash 是如何利用 ZKP 達成匿名交易的!
參考資料
概念介紹
Cryptography Playground
zk-SNARKs-Explainer
神奇的零知識證明!既能保守秘密,又讓別人信你!
認識零知識證明 — COSCUP 2019 | Youtube
應用零知識證明 — COSCUP 2020 | Youtube
ZK Rollup
動手實做零知識 — circom — Kimi
ZK-Rollup 开发经验分享 Part I — Fluidex
ZkRollup Tutorial
ZK Rollup & Optimistic Rollup — Kimi Wu | Medium
Circom
circom/TUTORIAL.md at master · iden3/circom · GitHub
ZKP Hello World
其他
深入瞭解 zk-SNARKs
瞭解神秘的 ZK-STARKs
zk-SNARKs和zk-STARKs解釋 | Binance Academy
[ZKP 讀書會] MACI
Semaphore
Zero-knowledge Virtual Machines, the Polaris License, and Vendor Lock-in | by Koh Wei Jie
Introduction & Evolution of ZK Ecosystem — YouTube
The Limitations of Privacy — Barry Whitehat — YouTube
Introduction to Zero Knowledge Proofs — Elena Nadolinski
ZKP 與智能合約的開發入門 was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
程式碼範例 在 軟體開發學習資訊分享 Facebook 的最佳解答
NT470 特價中
了解如何使用 Node.js 建 構 GraphQL 應用程式。包括 Prisma、身份驗證、Apollo 客戶端等等!
從這 23.5 小時的課程,你會學到
✅ 通過建構實戰的 Node 應用程式來學習和掌握 GraphQL
✅ 使用 Prisma 從生產資料庫儲存和存取資料
✅ 使用 Apollo 客戶端從你的網路應用程式中與 GraphQL 溝通
✅ 瞭解如何佈署和測試你的 GraphQL 應用程式
✅ 通過完成 80 多個程式設計挑戰來測試你的技能並獲得自信
✅ 獲得免費的 110 頁 PDF 指南,包括演講筆記、程式碼範例和文件連結
https://softnshare.com/graphql-bootcamp/
程式碼範例 在 在地上滾的工程師 Nic Youtube 的最讚貼文
對於設計模式的學習有多方派系持不同意見,但仔細去思考,會發現設計模式的存在是避免自己發明愚蠢的設計在已經常出現的問題上,在日新月異的科技進步下,隨著商業邏輯更加複雜,軟體工程師所遭遇到的問題也一次比一次還難
Design Pattern 的存在是幫助思考,避免不必要的協作災難,只要能懂得這點並融會貫通,職業生涯中有更多的時間去學習不同的思考方式、軟體架構以及團隊管理
成為真正的資深工程師道路上,Design Pattern 絕對是一門主修科目,你可以不完全使用,但卻不能不知道
以下是學習 Design Pattern 的推薦資源,其中包含筆記、書籍和程式碼範例
✅ 我的部落格筆記(Ruby) https://blog.niclin.tw/2018/11/18/%E7%89%A9%E4%BB%B6%E5%B0%8E%E5%90%91%E5%9F%BA%E6%9C%AC%E5%8E%9F%E5%89%87-solid-ruby-sample/
✅ 設計模式學習筆記 https://skyyen999.gitbooks.io/-study-design-pattern-in-java/content/
✅ 七天學會設計模式:設計模式也可以這樣學 https://www.books.com.tw/products/0010750585
✅ 大話設計模式 JAVA 版範例: https://github.com/skyyen999/bigTalkDesignPatternJava
章節:
00:00 算我拜託你了
01:00 什麼是 Design Pattern
02:25 學習 Design Pattern 的好處
04:43 實際應用與學習方式
07:34 導入工作
喜歡影片的話!可以幫忙點個喜歡以及分享、訂閱唷!😘
━━━━━━━━━━━━━━━━
⭐ 蝦皮賣場: https://shopee.tw/bboyceo
⭐ instagram (生活日常): https://www.instagram.com/niclin_tw/
⭐ Facebook (資訊分享): https://www.facebook.com/niclin.dev
⭐ Blog (技術筆記): https://blog.niclin.tw
⭐ Linkedin (個人履歷): https://www.linkedin.com/in/nic-lin
⭐ Github: https://github.com/niclin
⭐ Podcast: https://anchor.fm/niclin
━━━━━━━━━━━━━━━━
🌟 任何問題或合作邀約信箱: niclin0226@gmail.com
#designpattern #前端 #後端
程式碼範例 在 網頁設計x廣告行銷 Youtube 的最佳解答
Subscription歡迎訂閱頤齊邦的YOUTUBE
https://goo.gl/mG0yTA
--程式碼範例如下 ★Youtube的內容不支援<小括號>請在依影片中的方式加入●--
【a href="你的line連結" target="_blank"】
【img src="圖片位置" 】
【/a】
程式碼範例 在 程式交易- 480萬獲利程式碼大放送- PVI正量指標&NVI負量指標 的美食出口停車場
開放 程式碼 , 範例 程式有480萬獲利,免費大放送。超強指標- PVI正量指標&NVI負量指標策略上線的標準,最大策略虧損報酬https://youtu.be/7U5NtVoXvUM ... ... <看更多>
程式碼範例 在 即時文章程式碼範例 的美食出口停車場
即時文章程式碼範例. 即時文章的結構是一組元素,用途是定義文章與眾不同的特色及顯示文章元素。若您剛開始使用即時文章,請先參閱建立文章指南中的教學課程,瞭解如何 ... ... <看更多>