研發神經網絡處理器NPU及解決方案,Kneron要做人工智能時代的NVIDIA
過去這些年,伴隨着 3D 技術興起,專用於 3D 圖形運算加速的 GPU 崛起,並誕生了 NVIDIA 和 ATI (現 AMD) 兩大巨頭。近幾年人工智能興起,對高效運行神經網絡算法的處理器需求日益增加。為此 Google 研發了專用於深度學習的 TPU,中星微發佈了國內首款 NPU 「星光智能一號」等。來自美國的 Kneron,也希望用針對神經網絡計算加速的處理器 NPU,成為人工智能時代的 NVIDIA。
關於 NPU(Neural Processing Unit),目前還沒有準確定義,通常是指專門針對神經網絡的計算進行加速的處理器,可以低功耗高效能地處理并行運算。3D 時代誕生了 GPU 針對通用 3D 做加速,AI 時代或許也需要針對神經網絡加速的 NPU。目前的 GPU 也具備高效并行計算能力,但 NPU 在神經網絡計算方面的性能和功耗又要優於 GPU。
通過提供 NPU 及配套的軟件解決方案,Kneron 給自己定位的是未來的 Google+NVIDIA。Kneron 的 NPU 支持運行各種神經網絡,如 Caffe、TensorFlow 等。處理器本身體積很小,小到可以嵌入手機,但創始人劉峻誠博士告訴 36 氪,Kneron 的處理器性能很強。以運行目標識別算法為例,Kneron 的 NPU 性能是英特爾 Xeon E5 CPU 的 8 倍、英偉達 M40 GPU 的 2 倍左右,而功耗,分別是兩者的 1/1000 和 1/2000 左右。
除了芯片,Kneron 自己也做智能算法的研究,可以把面向特定功能、訓練好的神經網絡模型寫入芯片提供給客戶。Kneron 還可以提供服務器端的 NPU,並組建雲 + 端協同的整套 NPU 解決方案。劉峻誠博士介紹,Kneron 已經簽訂了一些大客戶包括:國內著名互聯網巨頭、台灣著名代工廠、國內著名手機和通信系統供應商、國內頂尖大學旗下芯片公司等。
要研發 NPU,顯然需要團隊此前有相當的積累。Kneron 創始人劉峻誠是 UC Berkeley、UC LA 和 UC SD 博士,曾參與 NASA JPT、IARPA、Bell Labs 的研發項目,也曾在三星研發中心和高通任職。聯合創始人還包括 Intel 聖地亞哥藍牙部分前負責人、中興手機前 VP、甲骨文前副董事總經理與技術總監。團隊其它成員畢業於 MIT、Cornell、Purdue、清華、台灣大學等,曾在 Google、微軟、Broadcom、Bell Labs、IBM 等機構任職。
Kneron 剛剛成立半年,團隊目前人數不到 20 人,此前曾獲得數百位美元的天使輪投資。雖然 NPU 屬於技術門檻相當高的領域,但畢竟 Google、高通、NVIDIA、IBM 等都在朝這一領域加大投入,時間對於 Kneron 顯得十分重要。
資料來源:http://www.hksilicon.com/articles/1116921…
同時也有2部Youtube影片,追蹤數超過24萬的網紅啟點文化,也在其Youtube影片中提到,【線上課程】《過好人生學》~讓你建立迎向未來的思維與能力! 課程連結:https://pse.is/H8JXH 第一講免費試聽:https://youtu.be/-EHOn0UxMys 不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH 【8/3開課!】《人際回應力-看...
神經網絡算法 在 啟點文化 Youtube 的最讚貼文
【線上課程】《過好人生學》~讓你建立迎向未來的思維與能力!
課程連結:https://pse.is/H8JXH
第一講免費試聽:https://youtu.be/-EHOn0UxMys
不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH
【8/3開課!】《人際回應力-看懂情緒,輕鬆對談》~第23期
一個人的命運,是回應力的總和!
課程資訊:http://www.koob.com.tw/contents/157
更多學員心得分享:http://goo.gl/Guc6V6
【線上課程】《自信表達力》~讓你不再害怕開口
從「敢表達、說清楚」到讓人「聽得進、會去做」的完整學習
課程連結:https://pse.is/RG5NC
第一講免費試聽:https://youtu.be/fAjySLoa2f8
不定期推出補充教材,讓學習無限延伸:https://pse.is/NUJK9
【線上課程】《理財心裡學》~擺脫家庭影響,從心培養富體質
課程連結:https://pse.is/EPBWE
第一講免費試聽:https://youtu.be/HgrDK7pqR-0
不定期推出補充教材,讓學習無限延伸:https://pse.is/NJ5VE
【線上課程】《時間駕訓班》~
學會提升效率,擺脫瞎忙人生,做自己時間的主人
課程連結:https://pse.is/DDDHB
第一講免費試聽:https://youtu.be/flfm52T6lE8
不定期推出補充教材,讓學習無限延伸:https://pse.is/GXZWM
【線上課程】《人際斷捨離》~
讓你留下怦然心動的關係,活出輕盈自在的人生!
課程連結:https://pse.is/E5MW5
第一講免費試聽:https://youtu.be/YyLvd1cNcDw
不定期推出補充教材,讓學習無限延伸:https://pse.is/LVRLY
【我們有Podcast囉~】歡迎到Podcast應用裡搜尋「啟點文化一天聽一點」訂閱我們!
Apple Podcast~https://pse.is/N2WCZ
Google Podcast~https://pse.is/PEN2Z
在Himalaya收聽~https://www.himalaya.com/ekoob
在Spotify收聽~https://pse.is/PQT76
在SoundCloud收聽~https://soundcloud.com/ekoob
桌遊【人際維基】~一玩就懂得別人的在乎:https://goo.gl/Ej4hjQ
到蝦皮購買【人際維基】:https://goo.gl/ASruqR
=========================
每個人都想要找到更穩定、更有保障的工作,不過我要提醒的是,要是你沒看今天的節目,到頭來,你可能只剩下一場空。
在收看影片之前,不管你是在Youtube還是Podcast收看或收聽,記得訂閱我們的頻道,你的具體支持,是我們製作節目的最大動力~
最近在網路上,有某些關鍵字持續的飆升,像是「企業紓困」、「疫情紓困」都引起上萬人次的搜尋。
而這些關鍵字的背後,也代表著在疫情平息之前,無薪假、失業這些問題不會改善,人們也很難恢復安全、穩定的生活;因此人們會傾向去尋找更有保障的工作,這也讓坊間的公職考試補習班,又熱門起來了!
公職補習班迷思
當然喔,追求安全、穩定本來就是人性,只是當我發現這些公職補習班,還用一些有一點不合時宜的標語,對求職者做宣傳,像是什麼呢?「參加銀行特考,就能擁有讓人羨慕的福利跟待遇」。
甚至是「書記官地位崇高,形象良好,進可攻擊他人之不正,退可保守自己親朋之安全。」這其實是一類的訴求喔,有一點誤導大眾的認知跟行為,我一定要來逆風發言一下。
那為什麼我會這樣說呢?台灣喔的「人工智慧」教父~李開復先生,在他的著作《AI新世界》裡面提到。
他認為人工智慧註定會顛覆世界,並且會帶來前所未有的經濟失衡,而眼下最直接的,就是在未來的五到十年之內,對於全球就業市場帶來的衝擊,很多一般人認定的金飯碗,很可能都會被AI取代。
白領失業潮來了!
李開復在他的書裡面,更進一步的指出,近年來,世界各國因為「無人銀行」的興起,各種AI的工具,已經可以承擔90%以上的金融業務。
再加上喔現代年輕人,普遍使用行動支付、網路銀行的比例越來越多;實際到銀行臨櫃的人越來越少,而第一線的金融人員的工作就此消失,已經是顯而易見的結局!
國外甚至於已經出現申請貸款,把資料送出到核可,不到幾個小時就能夠完成。
這裡的關鍵,就在於AI機器人已經掌握申請人的大量數據,可以在很短的時間裡面做完風險評估,而這些都是人類很難做到的事情。
再來,法院書記官的工作,就是掌管司法紀錄、編案、文牘、統計這些事務;講白話文就是「法院資料的輸入與管理」。
但你知道嗎?現在的科技,已經可以讓機器聽懂人類說話,同時呢在螢幕上轉換成精準的文字,準確率高達九成以上。
你想想看喔,假如準確率繼續提高,費用也越來越平價,法院或者是政府是不是有很大的可能性,會直接採購這樣的設備來取代書記官呢?
一來呢,大幅降低薪資的費用,二來呢,降低人員管理的問題;畢竟人類加班會抱怨,但機器不會有這個問題。
聽到這裡喔,你也許會好奇,以前聽說的AI、人工智能會取代的工作,那應該都是像工廠的工人,或者是體力活動的藍領階層才對啊!
那怎麼現在這些靠「腦袋」的工作,像是銀行行員、書記官,這些白領職業,也會被AI取代呢?
這是因為啊,現代的AI本質,其實是一種「深度學習」!那什麼是「深度學習」呢?
李開復先生在他的書裡面提到,深度學習是一種模仿生物智能的「神經網絡式」的學習方法。
簡單來說喔,過去的電腦只能執行單一程式;比如說,你希望機器人幫你到早餐店買三明治;那麼一旦輸入你家到早餐店的路線,機器人就會執行到底。
如果在路上遇到車它不會閃,遇到人也會直接輾過去,一直到抵達早餐店它才會停止,那是一種沒有思考、沒有應變能力的一個反應模式。
而神經網絡式的學習,則是透過數據資料,幫機器人建立起路況,可能會遇到的障礙物這些相關的應變資訊跟程式。
讓機器人可以在遇到阻礙的時候,先停下來,重新偵測、評估環境的狀況,再計算出成功率最高的路線,轉個彎重新出發,這已經是很接近人類能夠做到的靈活思考。
也就是說啊,在固定的場景底下,只要能透過數據,找到人類固定的「行為模式」,再請工程師把行為模式寫成「運算的程式」。
最後依據收集到的海量大數據,讓AI系統去做深度的學習,AI就能夠擁有思考能力,取代很多白領的工作。
容易被AI幹掉的二特點
從上面的例子,我們可以進一步的知道,符合以下二個特點的工作,很有可能會跟恐龍一樣,在地球上消失喔。
這二個特點又是什麼呢?第一個、那些資料、流程可以編碼的工作;第二個、人際互動頻率很低的工作。
打個比方來說,就像是現代的醫檢師、放射科的醫師,或者是銀行行員,他們都是在固定場景底下,專門分析數據跟資料,再不然就是工作流程有明確的SOP。
工作內容固定,而且有一套嚴格的作業流程和評判標準,不會有太多參數的變化,就很容易被編碼,而變成一條程式。
在未來呢,凡是可編碼的流程,再讓機器人通過大量數據的深度學習,就能夠快速的優化,任何動作都會比人類更快、更精準,而且可以一直進步,還不會喊累!
我們與AI的距離
要是你聽到這裡還半信半疑,感受不到AI對於職場的全面破壞,那麼我再提供一個更貼近你我的事實~
台灣的知名品牌~華碩電腦,在他們關渡總部的13樓,已經有一個130人的AI團隊,成軍了16個月。
而負責領軍的華碩全球副總裁~黃泰一先生,他就表示喔,華碩的AI團隊,已經鎖定醫療、交通、零售這三大產業的數據池,累積使用者的數據資料、網路足跡等等的一切。
透過這些進一步的為零售店家、醫院、輪胎業者,建立起節省人力、降低風險,而且能夠精準行銷的演算法系統。
幫助華碩在他們的未來,能夠透過大量的數據,以及資料跟資料之間的相互運用,所產生的商業價值來賺錢!
儘管現階段呢,華碩只針對醫療、交通、零售這三大產業在搜集數據,不過可以想見的是喔,只要精準的演算法系統建立;商店它是不需要店員,醫院它可能也不太需要醫檢師,輪胎製造廠不需要工人。
而未來這三大產業所需要的「人力」,將以跳崖式的速度往下滑。這也間接證實了李開復先生,在《AI新世界》這一本書裡面所預告的。
他說:「在未來的5~10年之內,現有的50%工作,將會由AI取代」!
所以拉回來看,只要你有稍微留意時事,你一定知道現代的公務人員、銀行行員,就算寒窗苦讀多年考了進去,福利和工作的輕鬆度,也都大不如前了,更別說他們的未來和發展。
也就是說喔,要是你忽略真實職場上正在發生的變化,那麼很有可能等到你花錢、花時間努力考上公股銀行的行員啊、書記官啊...等等的,卻只能做個幾年,就被裁撤了!
這樣的投資報酬率,你覺得划算嗎?算一下喔!會不會你以為自己考到一個安全可靠的資格,但是真正得到的,卻是更高的失業風險!
你想因為「眼前」短暫的穩定,而把自己放到更大的危險裡嗎?如果你不想,你可以選擇現在就打開眼睛,開始為自己的未來做準備~
假如你很想要為自己打造不敗的未來,讓自己的求職、轉職之路,擁有更務實的安全跟穩定,我會很鼓勵你參與我們啟點線上學苑~【過好人生學】這一門課的學習。
人工智慧的時代已經來臨了,但我們卻還用舊時代的工人智慧的腦袋,在面對自己的人生,你曾想過這是為什麼嗎?
其實答案很簡單,那就是「終極選項」和「路徑依賴」這兩大迷思,困擾了很多人。
在【過好人生學】的課程裡,我就會陪伴你去看見「終極選項」這樣的觀念,它的危險之處。
它在於喔,人類的大腦一旦認定當我們「找到了最好的答案」,或者是「最好的鐵飯碗」之後,我們就不再動腦筋思考了,所以會看不見鐵飯碗早就成了破飯碗,千萬別碰!
而「路徑依賴」呢?它是指喔,人會習慣用過去的經驗,想現在的事,然後去預測未來。
比如說吧,你念醫學院,所以就只能當醫生;再比如說,你過去在某個行業,所以你在轉職的時候,就只能做相關的行業。
而弔詭的是,如果過去的經驗能夠適用於現在,還能夠幫你預測未來的話,那每個人都是半仙了啊,也不會有失業的問題、找不到工作的狀況了,不是嗎?
所以呢,無論你是白領,還是藍領的朋友,我想要跟大家說的是喔,未來AI的潮流肯定是沒有辦法阻擋的,無論你想不想面對,它遲早都會來!
不過我也很肯定的告訴你,在我們失去「舊工作」的同時,這個世界還會增加許多的「新工作」。
只要你願意改變,跟上腳步,某些你覺得沒有什麼的工作,其實都潛藏著非常大的人力缺口,值得你好好的關注。
而幫助你換個腦袋,轉換成智能思考的第一步,就是歡迎你加入我們的線上課程【過好人生學】。
【過好人生學】從即日起,到6/12晚上十二點止,我們將推出季節限定的1413的優惠價~
我一直相信喔,未來仍然是充滿希望的,在【過好人生學】裡面,我會用最淺顯易懂的話,點破你對於生涯的迷思,幫助你移除20世紀的思考遺毒,發展出最適合21世紀的生存策略。
我還會幫助你繞過三個心智的陷阱,陪伴你一步一步的去建立起,新時代必備的四大能力,你將看見自己的更多可能性,並且懂得轉換自身的專業,幫自己規劃1413、一世一生的生涯藍圖,過上一個更好的人生。
歡迎你加入學習,也希望今天的分享能夠帶給你一些幫助,我是凱宇。
如果你喜歡我製作的內容,請記得訂閱我們的頻道,YouTube收看的朋友,除了訂閱之外,記得把訂閱旁邊的小鈴鐺打開。
而Podcast收聽的朋友,除了訂閱之外喔,也請給我們5顆星的評價,並且把它分享給你身旁的朋友,我們需要你用最具體的行動來支持我們。
然而如果你對於啟點文化的商品或課程有興趣的話,如同今天提到的【過好人生學】,我們季節限定的1413優惠,陪伴你一世一生。
歡迎你的加入,更期待你在學習之後的發現;那麼今天就跟你聊到這邊了,謝謝你的收看,我們再會。
神經網絡算法 在 范琪斐 Youtube 的精選貼文
人臉辨識,就是用科技計算的方式,來比較臉部視覺特徵,藉此鑑定身分的一種電腦技術。
其實我們可以把人臉辨識想像成是一套演算法,各種不同的廠商或公司可能會有不同的演算規則。但整體的邏輯是一樣的,通常會先偵測人臉、然後進行臉部校正與擷取特徵、再進行比對工作。
當攝影機拍到你的時候,它第一步也會先切成一張一張的影格,然後去找到你的臉,就像是我們相機在拍照的時候,它不是會在臉旁邊出現一個框框讓你比較好對焦,這就是使用了人臉偵測的技術。
也因為人臉其實有一些特徵,所系統會開始擷取一些我們臉上出具有「辨別度」的特徵,像是顴骨的形狀啦、眼窩的深度之類的,一張臉大約有80幾個識別點,但也因為拍攝時可能剛好低頭或轉頭,或是受到光線影響之類的,有些系統會在抓取特徵的時候也要進行校正,利用人中啊、眼睛啊或嘴角之類的作為錨點,將人臉校正到同一個比較基準。現在也有2D轉3D的技術,用3D模型來計算你不同角度應該是長什麼樣子。那抓出這些特徵以後呢,這個演算法會把你臉上用這些特徵畫出來的向量,轉換成編碼,於是你這個人獨特的特徵就可以用一串數字來代表,最後再送到資料庫進行比對。
雖然人臉識別這個技術早再很多年前就已經開始發展,但是到這幾年因為電腦計算速度大幅加快、雲端技術成熟,才有較大的進展。而且這樣子一套演算法,還需要透過AI深度學習,模擬我們大腦神經網絡的運作,然後從大規模未標記的資料中學習,來建立出一套演算法、不斷優化出更好的模型。才能讓辨識度越來越準確。
不過即使臉部辨識技術已經發展了一段時間,辨識準確度卻還是有待加強,美國國家標準暨技術研究院 (Nist) 的一項測試就發現,2014年到2018年期間,人臉辨識系統因為深度學習的技術,失敗率從4% 降到 0.2%。BUT!資料庫中的照片跟現實生活中可不一樣,每個人頭擺的角度、臉出現在畫面中的位置、拍攝光線、畫素、有沒有戴帽子、帶圍巾或變老,這些都會影響準確度。而且目前雙胞胎的辨識,還是一大難題。
像是英國南威爾斯警方2017在歐洲足球冠軍賽期間,測試一款全新的AI臉部識別程序,可以搜尋比對資料庫裡面的50萬筆潛在罪犯資料,結果系統在17萬名觀眾當中,配對了2470人為潛在目標,但是錯誤率高達92%。
Amazon 2016年推出影像辨識 AI 系統Rekognition,也曾經把28名國會議員辨識為罪犯,讓大家都嚇到吃手手。美國奧蘭多市政府也從 2017 年開始與 Amazon 合作進行先導計劃,在市內幾個地方架設監視器,實時進行人臉辨識,希望可以找出通緝犯等特定人士,幫助執法。不過在 15 個月的測試中,卻發現系統經常誤判,準確度常常出問題,後來在2019年終止這項合作。
人臉辨識跟很多技術一樣,就是個雙面刃。雖然這項科技已經越來越進步,而且透過電腦的深度學習,讓判讀的準確度大大提升,但它仍然不像DNA那樣,正確度高達99.9%,可以作為決定性的判定標準。
--------------------------------------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在 #寰宇新聞台 播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 1030pm準時上傳完整版!
神經網絡算法 在 人工智能AI 机器学习ML | 神经网络| 美女算法专家用三种函数带 ... 的美食出口停車場
用最通俗易懂的语言讲 神经网络算法 的相关知识,主要从激活函数,损失函数及优化函数来讲,用三种函数将神经网络贯穿,希望可以让大家快速了解神经网络 ... ... <看更多>