今天來跟大家聊聊和法律有那麼🤏🏻關係又沒那麼有關係的「#逆向歧視」。
逆向歧視(reverse discrimination)
在保障特定群體受到公平待遇後,因為擁有固有優勢的群體反而因此受到新的歧視或不公平待遇。
就是說,佔多數的群體或是比較強勢的群體,因為原有的優勢反而受到比較不好的差別待遇。
這個議題其實台灣還蠻喜歡的,雖然不一定知道這也許算是逆向歧視,要舉例的話大概就是所謂 #女權自助餐?
網路上很容易出現女權自助餐這個詞,身為女性的me也不否認有這樣的人存在,女性自助餐之所以被批評是因為被認為只支持對女性有利的特別待遇,而沒有實質上追求男女平等反抗父權思想或文化,對於男性而言這樣喊著女權的人似乎太投機了!(當然那些男性到底支不支持男女平等也是另外一回事)。
最近大法官釋字第807號對勞動基準法第49條女性夜間工作的規定作出違憲的結論,釋字第807號認為原則上禁止女性夜間工作是一種限制(歧視?)不平等,但我在看這規定的時候反而認為,喔所以要叫女性工作雇主必須提供安全衛生措施與交通工具或宿舍,但是雇主如果要男性夜間工作卻可以不用提供這些叫你做就做,雖然台灣社會普遍是對女性比較不友善沒錯,但這規定下的男性不是很可憐嗎🥲好像男性在夜間就不會出事一樣🥲
先前和友人討論到身分加分這規定,其實有很多有身分有加分的人,平常的生活根本不受身分影響🙃
於是我本人就覺得,這是不是也算是一種逆向歧視呢???
不過牽扯到「#歧視」這兩個字,要考量的因素就非常多,當然還要思考時代科技想法的進步,某些規定或觀念在舊時是平等,隨著社會變遷可能就會變成不合時宜的逆向歧視。
所以,法律規定必須隨著風土民情時代文化而發展進步才行,這樣人們才會活在一個美好的世界喔🤗(用一個類似生日願望是世界和平的概念來作結🤣)。
小週末一個小小的聊天內容,大家不要罵我喔😘
━━━━━━━━━━━━━━━━━━━━━━━━
#吳啟瑞律師 #劉雅雲律師 #翁毓琦律師 #hugowulaw
-
◤𝗙𝗢𝗟𝗟𝗢𝗪 𝗨𝗦 ◢
▸𝗙𝗕 ⇨ #司法劉聲機x法律老司機
▸𝗜𝗚 ⇨ @hugowulaw
▸𝗟𝗜𝗡𝗘 ⇨ @hugowulaw
特定性工作舉例 在 報時光UDNtime Facebook 的最讚貼文
【猶抱時光半遮面】#藝旦 #時代歌聲的收納箱
文‧圖︱林太崴(類比音聲玩家)
若說藝旦是個職業類別的話,在島內早已消失許久。
遠在清朝時代,青樓便頗為盛行,到了日本時代,所謂「花柳界」甚至更具規模,尤其設有專人專法進行管理的「遊廓」(又稱色町)。在遊廓下的各種相關分類中,娼妓是最明確帶有情色服務的,其他如藝妓、酌婦、酒女、女給,則有點走擦邊球路線,漂遊於有與沒有之間。大多數人可能對於藝旦有個誤解,認為她們是性工作者之一。事實上,有別於賣身的妓女,正式的藝旦僅能賣藝,訓練嚴格、生活規律。她們受教育、識字、要會唱各種北曲南詞、習樂器、寫詩吟詞,更要應對得宜、舉止得體。名牌藝旦日日有專人梳妝,出入有車伕。天天都打扮得美美的、香香的,優雅地散發出最極致的女性魅力,以便迷倒眾多尋芳客。
在錄音技術尚未發明之前,藝旦穿梭在各地的料理屋或專屬藝旦間,可說是最早的明星形式,她們會有屬於自己的支持者、場域與公開活動。而在錄音技術普及之後,唱片工業興起,某些藝旦面臨某部分獨特娛樂性被唱片取代了的問題,一部分藝旦選擇繼續留在特定場域空間進行表演,而有另外一批藝旦選擇懷抱新科技,進入錄音室,在唱片世界裡找到自己的新舞臺。
1926年起,專門接待仕紳的台灣料理屋東薈芳、江山樓、蓬萊閣有多位專屬藝旦開始積極參與錄音,直至戰前整個唱片工業結束這二十年期間,藝旦圈對於唱片工業可謂貢獻良多。研究者林倚如形容藝旦就是「時代歌聲的收納箱」,為了賓客的需求,各種樂種都得習藝:北管、南管、日本曲、流行歌......都在演唱及錄音的範疇內。
#稻江名旦
在風月報或三六九小報當中,常可以看見當時藝旦的各種動態,其中有幾位藝旦特別受到矚目,而她們同時也是唱片工業中的要角,其中一個代表人物即是幼良。
出身大稻埕的幼良女士可說是大稻埕一流藝旦無誤,不僅灌錄唱片,甚至也上廣播,透過放送對日本樂迷獨奏揚琴,讓各地樂迷感到十分歡欣。根據報導,她是個大眼睛、鼻子高挺的小個子時尚女伶。幼良的美,可不是隨便口說,她曾在美人投票中脫穎而出,當選藝妓部花狀元,說她是紅牌明星絕不為過(風月報,1936年)。1932年流行歌天后純純唱的〈臺北行進曲〉歌詞中,幼良還入了歌詞,當中唱道:「行入蓬萊閣旗亭,走樓親切恰叮嚀,檢番花譜提來擇,幼良、寶惜及桂英。曲唱清風亭、寶連燈、二進宮、李樣起興、黃樣起統,二ケ對唱献西城」。由這幾句歌詞看來,幼良以藝會客的畫面似乎歷歷在目,花名錄裡登載的幼良人氣非常高,獻唱的曲目也很多元。更特別的是,純純演唱的名曲〈望春風〉於1934年發行之後,因為正當紅又人氣高,1937年改編為同名電影。其中,幼良跨刀飾演藝妓彩鳳,真可說是影歌雙棲。
幼良另一個才藝是揚琴,她回憶道:「想起第一次看到揚琴就非常喜歡,特地拜託黃章田先生每天從萬華過來,每天努力的練習揚琴,今天才能往內地日本放送,甚至讓我收到了很多從日本寄來的信件,把我當成他們的愛戀對象,希望我能去日本去表演,或是至少給他們簽名照之類的請求。我最初也想見見那裡的樂迷,不過仔細想想身邊還有孩子,又是如此遙遠的地方。此外,主要的是我的日文又不通。所以無法前往,但最起碼可以寄送簽名照給他們。」從這則報導,可見她當年受廣大粉絲歡迎的程度。
1931年,〈烏貓行進曲〉唱出臺灣流行歌的第一聲,不過幼良的〈雪梅思君〉更受到市場歡迎,日蓄唱片公司前後共再版了至少3次。該曲錄音時,幼良才剛踏入藝旦這一行沒多久,年紀應該跟純純差不多,約略於1914年出生。這首〈雪梅思君〉甚至到了戰後還有許多歌手持續翻唱,包含天后江蕙。
#烏貓之聲
上述提及了〈烏貓行進曲〉,它的確是台灣最早發行的流行歌曲,演唱者其實也與幼良一樣,同為藝旦,她叫秋蟾。雖然此曲可說早被世人遺忘,但是透過該曲的再出土,我們才有機會一窺當時所謂的流行歌最早期風貌。我們現今聽到的所有流行歌,都曾經經歷演進的過程,而這個過程,則在〈烏貓行進曲〉發行後才算正式萌芽。
當年的流行歌可說是唱片界的一個相當重要的里程碑,詞曲作者及歌手必須在某個程度上夠了解流行歌是什麼,並且要有一定的成熟度才能與這個來自西方概念的世界流行接軌。接軌的同時,除了遵守流行歌的規則外,還得融入臺灣味,創作出讓聽眾可以接受的詞曲。所以其重大意義在於融合外來與內有,新創與舊存,西方與臺灣。這個挑戰對剛開始起步耕耘的這群人來說,絕對不是一件容易的事。
藝旦秋蟾唱了〈烏貓行進曲〉,「烏貓」以當時的社會氛圍來說,就是「摩登女子」。我們從風月報看到的秋蟾照片,秀麗當中透著貴氣,顯然就是一位烏貓代言人。
#最成功進入流行歌圈的藝旦
青春美,可以說是在流行歌界最成功的藝旦了。她本名為林春美,原為桃園人,後於臺北太平町擔任藝旦,專攻京曲。初入唱片界首度現聲在文聲唱片,與鄧雨賢合作了數首曲子,後兩人一同加入古倫美亞唱片公司。古倫美亞開啟了青春美的青春世界,以青春為名的她,專門演唱了青春系列歌曲〈老青春〉、〈青春美〉、〈青春美呢〉和〈青春讚歌〉,號稱青春歌手。青春美雖然學過京劇,不過卻沒有灌錄京劇或任何京音小曲唱片,也沒有像純純或愛愛一樣,挑戰其它樂種。脫離藝旦生涯後,看來便專心當個稱職的流行歌手。
除了在文聲的時期可以聽到她未脫京劇影響之外,在唱片中的表現漸入佳境,大致維持不錯的穩健水準。她唱紅的歌曲算來實在很多,紅利家的〈對花〉、博友樂的〈人道〉、日東的〈農村曲〉,還有泰平爭議不小的台灣首片禁歌〈街頭的流浪〉,都是青春美主唱。
整體來說,青春美算是在藝旦圈當中,切入流行歌界後表現最出色的一位,成績也最為亮眼。
#已消失的藝旦文化
大多數藝旦,在戰後的生活如何,後續過得好不好,只隔著資訊的大斷裂,皆不得而知。戰後新時代,藝旦文化消失在島內,成了一道說不出的無敵隔音大藩籬。
上述舉例的藝旦僅只是其中一部分,當時還有許多知名藝旦也灌製錄音,藝旦風華透過《風月》或《三六九小報》當中的報導看來也格外精彩。例如阿好、玉雲、根根、阿珠、鱸鰻或節子......等等。有趣的是,當時有兩位藝旦撞名,都叫「金治」,哪位歌迷要買哪位藝旦的唱片會搞不清楚,於是分別改取名為「小金治」和「大金治」。還有一組撞名更為奇特,因為都叫「罔市」,所以其中一位研判可能是皮膚較黑的罔市就被更名為「烏肉罔市」。
這些藝旦各有千秋,各有忠實歌迷,甚至曾經有日本歌迷將這些藝旦的錄音,從臺灣再買回原先的壓片地日本,當作聲音土產送給日本友人,於是這些唱片都曾經幾番折騰,數度漂流在往返臺日的海上,以聲音載體的形式來旅行。
藝旦的美,有聲有色。總令現代人多懷抱著神秘幻想,特別在現今已消失的台灣藝旦文化裡,更顯珍貴,充滿異時代的趣味。
#報時光專題 #報時光UDNtime
特定性工作舉例 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
近幾個月,在AI賦能未來醫療的思考特別多,受美國「WIRED連線」雜誌邀請撰寫了一篇專欄文章。我相信十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
原文刊於「WIRED連線」雜誌英文官網:
Covid-19 Will Accelerate the AI Health Care Revolution
https://www.wired.com/story/covid-19-will-accelerate-ai-health-care-revolution/
中文翻譯來自創新工場微信公眾號 2020-5-22
新冠大流行將加速醫療AI革新
—————————————
2020年元旦前夜,一家位於加拿大多倫多市的人工智能(AI)企業BlueDot捕捉到一些異常:中國武漢市海鮮市場周邊出現多起罕見肺炎病例,BlueDot迅即反應,運用自然語言處理、機器學習等技術,結合大數據和定位追踪,迅速向合作的政府部門和公共衛生機構客戶傳送警報並報告擴散狀況。BlueDot所監測到的異狀,正是數月後撼動全球的新型冠狀病毒肺炎(Covid-19),這比世界衛生組織首度公開警示新冠病毒的時間還要早上9天。
BlueDot的AI平台示範了人工智能技術對重大疫情能起到早期預警的功用,過去幾個月裡,AI在這場全球抗疫戰的許多方面發揮了獨特作用:從疫情預測到篩檢,從接觸警示到快速診斷,從前線無人配送到實驗室藥物研發,人工智能助力防疫派上了不少用場,為特定場景應用賦能。
隨著疫情在全球蔓延,AI技術的創新應用也在各地相繼落地。在韓國,基於地理位置的信息傳遞已經成為控制病毒傳播的重要工具,當人們靠近確診病例時,就會收到基於位置的緊急信息提醒。在中國大陸,阿里巴巴推出的AI算法能夠在20秒內診斷出疑似病例(比人類檢測快了近60倍),準確率高達96%。無人配送車輛很快被投入到人類難以承受的場景,代替人類執行高傳染風險的運輸任務。湖北、廣東等省份的多家醫院相繼使用機器人為病人或被隔離家庭運送食物、藥品和物資。而在美國加州,電腦科學家正在研發能遠程檢測獨居老人健康情況的系統,一旦老人出現身體異常症狀,系統就會發出即時警報。
不過,目前人工智能在公共衛生體系的應用仍顯零散也未成體系。坦率說,過去四個月內,AI在抗疫之戰中的表現並不十分突出,我最多只能給它打分“B-”。新冠大流行暴露了我們的醫療系統的脆弱性:預警響應不充份、通報信息不精確、醫療物資分配不均、醫務人員超負疲憊、醫院病床緊繃、疫苗研發週期長等諸多痛點。當然,AI的零散表現也有客觀原因:醫療體系可說是現代社會各類運轉體系中最為複雜、陳舊不堪且難以變通的一種;且在新冠疫情襲來之前,我們並沒有真正意識到醫療體系問題的緊迫性,沒有提前採取相應的技術預防措施;最為關鍵的是,我們缺少建構AI解決方案所需的大數據。
把目光看向未來,我看到以下兩個AI賦能醫療的樂觀因素。
首先,作為AI燃料的醫療大數據已被激活。舉例來說,機器學習數據科學平台Kaggle組建了新冠病毒開放研究數據庫,名為CORD-19。它將相關數據進行彙編,並把最新研究集中收錄,匯總的格式可被機器讀取和解析,以便於AI進行機器學習。至今這個數據庫收錄了12.8萬篇包含Covid-19、冠狀病毒、SARS(非典型肺炎)、MERS(中東呼吸綜合症)等關聯術語的醫學專業學術文章。
其次,眼下全世界的醫學專家和電腦科學家都將精力集中在解決疫情問題。 X大獎基金會創始人彼得·戴曼迪斯(Peter Diamandis)估計,全球現在有多達兩億名的醫師、科學家、護士、技術專家和工程師投入防治冠狀病毒的相關研發中,他們正在進行數以萬計的實驗,並以「前所未有的透明度和速度」共享信息。
3月16日Kaggle發起「新冠病毒研究挑戰」,匯集與疫情相關的大量信息,包括病毒的自然歷史、傳播和診斷方法、以及從過往流行病學研究中汲取的經驗教訓,幫助全球各地衛生機構及時掌握最新情況,以做出基於數據的分析決策。該項目發布後的五天內被瀏覽超過50萬次,下載量逾1.8萬次。在大陸疫情爆發後不到一個月,阿里巴巴便推出了一種AI算法,該算法基於5000多個新冠肺炎確診病例進行訓練,並關聯到治療後續諸如肺部白色陰影縮小等的成效追踪。隨後,阿里巴巴將其云端AI平台向全球醫療專業人員開源,與合作夥伴聯手部署更大批量的匿名數據,推出包括疫情預測、CT影像分析、冠狀病毒基因組測序等模組。
據估計,現今全球醫療數據的規模每隔幾個月就翻一倍。 2019年一份覆蓋19個國家AI醫療市場的研究估計,AI醫療市場的年複合增長率為41.7%,從2018年的13億美元將增長至2025年的130億美元,主要分佈在六大領域:醫院工作流程、可穿戴設備、醫學影像和診斷、診療計劃、虛擬助手、以及最重要的藥物研發,新冠疫情期間浮現的種種需求,將加速AI賦能醫療的場景落地。
在後疫情時代,我期待AI將加速融入醫療體系,賦能並推動醫療改革。其中深度學習(Deep Learning),即以一種高效方法運算海量、多維數據的能力,是AI結合醫療最為可期的機遇之一。深度神經網絡(Deep Neural Networks)作為AI的一個子領域,已經被用於醫學掃描、病理切片、眼科檢查甚至結腸鏡檢查,以得出準確而快速的算法判讀。十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
AI賦能醫療,首先能簡化及優化現有的醫療流程,例如醫院的作業流程,保險履約的繁複流程。將AI與RPA(Robotic Process Automation 機器人流程自動化)結合,可對某項工作流程進行智能拆解及優化,進而大大提高醫療系統的運營效率,預約看診、保險理賠及其他流程性工作都會得到效率提升。AI還能加快早期診斷信息的收錄並實現自動化,AI技術所能處理的文本、語言、數字的體量,無論在數量上還是精度上都是機器級別,遠非人類所及。
有了充份的醫療大數據作為基礎,AI還能為每個人或者每個群體建立健康數據基準量表。當我們掌握個體健康數據,就可以根據跟踪動態數據的波動變化,進行數據驅動的診斷,並對潛在大流行疾病的徵兆進行早期追踪研判。然而,再先進的技術系統要做到真正有效,勢必需要與既存的公共衛生警示和匯報機制形成高效鏈接,此類信息斷層即是新冠疫情在早期爆發期間存在的具體缺失。
再上一個層次的AI賦能體現在助力新藥研發、基因組測序、幹細胞、CRISPR(基因編輯)等醫學突破方面,AI模型和算法應用都有其用武之地。在製藥行業,研發一種新藥往往需要付出高昂的投入,某次成功前必有多次付諸流水的失敗試驗,也連帶消耗巨大的時間和金錢成本。現在,科學家們可使用AI機器學習來模擬上千個變量,測試它們的複合效應會對人類細胞反應產生何種影響,這類AI新藥研發的技術已被用於新冠病毒疫苗和其他療法。創新工場所投資總部位於香港的AI藥物研發公司Insilico Medicine是首批對新冠病毒快速響應的企業之一,這家公司利用生成式化學AI平台設計出新藥物小分子,以複製主要病毒蛋白為靶標,早在2月5日便公佈了這些小分子結構。 AI為新藥發明開闢了一個新時代,用人工智能技術來換取藥品研發週期的時間和成本,整個製藥行業勢將迎來翻天覆地的變革。
不久的將來,隨著醫療科學和電腦科學進一步融合,我們將進入一個全面自動化的AI時代,到時人們可以通過可穿戴設備、生物傳感器、智能家居檢測設備等來確保自身和家人的健康。可穿戴設備和其他物聯網設備的數據質量和多樣性大幅提高,將能產生一個有效的良性循環。穿越到未來,下一場疫情在大範圍蔓延之前就應該能夠被跟踪、追溯、攔截並消滅無踪。
或許再過15年,許多人的家裡都會有AI個人助理照料我們,幫著解決全家人的日常健康所需。機器人或者無人機負責把我們的藥品送上門,如果需要進行手術或者外科治療,通常會由機器人操作,或由機器人輔助人類外科醫師完成。在未來,醫生和護士將把更多的精力放在機器無法勝任的任務上,醫療專業人員及富有同情心的護理人員,將同時具備護士、醫療技師、社會工作者、甚至心理諮詢師的技能。他們會使用經AI強化的診斷工具和系統,但更多的時間會與患者溝通,安撫他們的傷痛,為他們提供情感扶持。在我的想像裡,15年後的醫療健康場景可能是這個樣子的:
***
2035年一個冬季早晨,我醒來後就覺得有點喉嚨痛。我起身去洗手間,刷牙的時候,洗手間的鏡子通過紅外傳感器測量了我的體溫。刷完牙後一分鐘,我的私人AI醫師助理發出了警報,顯示我的唾液樣本部分指數異常,並在輕微低燒。 AI醫師助理建議我在家進行指尖探針採血。我在泡咖啡時,醫師助理返回了分析結果,判斷我可能是得了這個季節正在流行的兩型流感其中一種。之後,我的AI醫師助理建議,如果我覺得有必要聯繫家庭醫生的話,有兩個時間空檔可以跟她視頻通話。通話之前,家庭醫生已經收到我所有症狀的詳細信息,她給我開了一種減充血劑和撲熱息痛,一會兒無人機就把藥品送到我家門口。
***
當然,凡涉及到患者的醫療記錄,就得談談隱私和數據保護的關鍵問題。我認為,任憑有用的數據各自孤島式的存在、不善加利用、不從中提煉有價值的信息、不用以推動社會進步,是相當不負責任的做法。技術產生的問題應該由技術解決。隨著AI技術浪潮而出現的諸如數據保護等問題,應該有更為創新的技術方法來應對。
好消息是,近年聯邦學習(也被稱為分佈式學習)已經在數據保護上取得了顯著的進展。基於聯邦學習技術,患者的數據將永遠不會離開所在的醫療機構、醫院或個人設備伺服器等原始存儲設備,機器學習模型將在獨立的數據庫基礎上進行訓練處理,再進行後續整合。聯邦學習、同態加密,結合可信硬體執行環境等技術,將進一步確保數據的計算、傳輸、存儲過程能夠適配不同的隱私偏好,以因應不同國家與文化對於隱私保護的需求差異。
這次新冠肺炎疫情還驗證了一個事實:整體人類命運是共同體,人們對未來運用AI等先進技術共度難關寄予一致的期盼。歷史上,國際合作曾消滅了全球延燒的天花,也幾乎根除了小兒麻痺症。公共衛生無國界,控制及消除流行病是個毋庸置疑的共同目標。在醫學領域,每個國家都能從他國的研究基礎上學習受益並攜手並進,全球化的數據科學,將進一步幫助人類獲取對健康和疾病最為深刻、最為全面的洞悉。
AI有潛力協助我們為下一次疾病大流行做更充份的準備。這需要醫學專家、AI科學家、投資者和決策者傾力協作,也需要關注醫療保健領域的投資人為聰明的創業者和科學家注入新一波動能。
經歷這次疫情,我們應清醒地意識到,要將人類醫療體系推往新的高度,著實需要傾盡全球之力。
創新工場董事長兼首席執行官
李開復博士