編編今天要來說一個 #滿級分學霸進入清華 的故事🤩
盧奕廷,當年18歲
是板橋高中第一個取得學測75級分的傳奇人物✨
然而年紀輕輕就很有想法的他
面試後斷然決定 #捨台大選清華
他進入了清華化工系
大學期間拿過4次書卷獎✍️
並以第一名的優異成績畢業
在大四那年,他決定直攻 #清華-利物浦雙聯博士
博一 留在清華化工所
博二博三 他來到英國利物浦大學化學所
第一天踏進實驗室
就做出團隊從來沒有的實驗結果
讓過去被認為無法重複充電再次使用的 ⚡鈣金屬空氣電池⚡
成功充放電!🔋
其實,相較於傳統鋰離子充電電池
鈣金屬空氣電池優點多多
#體積小 #地殼含量多 #不易爆炸
勢必成為未來再生能源儲電新選擇😎
這項研究也登上了最新一期的國際頂尖期刊
✨化學科學(Chemical Science)✨
今年,盧奕廷25歲
他即將拿到 🎓化學🎓化工 雙博士學位
是真正的 #學霸 兼 #時間管理大師 阿🤩🤩🤩
傳奇故事來到尾聲
讓編編補充一下
今年是 #清華與利物浦雙聯博士學位十周年
雙方共同指導的學生研究領域涵蓋動機、化工、資工、物理、經濟......
希望這樣的美好情誼能持續到下個十年💕
「清華與利物浦雙聯博士學位十周年」的推薦目錄:
- 關於清華與利物浦雙聯博士學位十周年 在 國立清華大學National Tsing Hua University Facebook 的精選貼文
- 關於清華與利物浦雙聯博士學位十周年 在 [徵才] 清華大學與利物浦大學雙聯學位獎學金- 看板PhD 的評價
- 關於清華與利物浦雙聯博士學位十周年 在 台大化學所的推薦與評價,DCARD、FACEBOOK、YOUTUBE 的評價
- 關於清華與利物浦雙聯博士學位十周年 在 台大化學所的推薦與評價,DCARD、FACEBOOK、YOUTUBE 的評價
- 關於清華與利物浦雙聯博士學位十周年 在 台大化學所的推薦與評價,DCARD、FACEBOOK、YOUTUBE 的評價
- 關於清華與利物浦雙聯博士學位十周年 在 清大化工博士班在PTT/mobile01評價與討論 - 台鐵車站資訊懶人包 的評價
- 關於清華與利物浦雙聯博士學位十周年 在 清大化工博士班在PTT/mobile01評價與討論 - 台鐵車站資訊懶人包 的評價
清華與利物浦雙聯博士學位十周年 在 清大化工博士班在PTT/mobile01評價與討論 - 台鐵車站資訊懶人包 的美食出口停車場
第一作者為清大與利物浦雙聯博士生盧奕廷,由利物浦大學化學系教授哈威克(Laurence Hardwick)與清大化工系講座教授胡啟章共同指導,另一位利物浦博 ... ... <看更多>
清華與利物浦雙聯博士學位十周年 在 清大化工博士班在PTT/mobile01評價與討論 - 台鐵車站資訊懶人包 的美食出口停車場
第一作者為清大與利物浦雙聯博士生盧奕廷,由利物浦大學化學系教授哈威克(Laurence Hardwick)與清大化工系講座教授胡啟章共同指導,另一位利物浦博 ... ... <看更多>
清華與利物浦雙聯博士學位十周年 在 [徵才] 清華大學與利物浦大學雙聯學位獎學金- 看板PhD 的美食出口停車場
國立清華大學與利物浦大學雙聯博士學位獎學金
國立清華大學材料系闕郁倫教授與利物浦大學化學系Colin R. Crick教授
招收雙聯學位博士生一名
歡迎有志於奈米材料、電化學反應、感測及綠能應用的同學申請。
此獎學金補助博士班四年修業期間之學雜費,詳情請參考以下說明,
有興趣的同學請聯繫清華大學材料系闕郁倫教授聯繫
連絡信箱: [email protected]
NTHU-UoL Dual PhD Programme Proposal
UoL Supervisor: Dr. Colin R. Crick,
Department of Chemistry
Email: [email protected]
Telephone: +44-(0)151-794-3534
NTHU Supervisor: Prof. Yu-Lun Chueh,
Department of Materials Science and Engineering
Email: [email protected]
Telephone: +886-3-572-2366
Project Title: Extended Applications of Hierarchical
Semiconductor Materials via Chemical Vapour Deposition
Aim
The project aims to develop strategically structured semiconductor
substrates for a range of applications, including; gas sensing,
electrochemistry, and catalysis. The materials will target real-world
utilisation, principally through providing resistance to both; wetting
and chemical degradation. The project ultimate targets the design
of a self-cleaning (superhydrophobic) gas sensors, able to function
in challenging environmental conditions.
Background/Methodology:
Semiconductors are commonly applied to chemical detection, and
the facilitation of reactions, due to their electronic structure. The
electronic properties of these materials are utilised in two main
ways; (i) the presence of molecules at the surface of semiconductors
can electronically perturbate these materials which is then detected
(e.g. gas detection), (ii) the electronic levels can also be manipulated
to drive chemical reactions (e.g. electrochemistry). In addition, the
unique I-V behaviours such as resistive switching or novel device
configurations based these materials will be investigated.
These materials (particularly gas sensors) require the target
molecule to make direct contact (physisorption/chemisorption)
with the semiconductor substrate. Consequently, they are susceptible
to surface contamination, as access to the surface of the material
may be blocked. Resulting in a reduction in device sensitivity as the
amount of contamination increases. This is a key concern for the
long-term use of these materials, whereby a progressive sensitivity
loss is continually considered, or special measures (including; regular
device cleaning, or protective housing) must be taken. A semiconductor
material able to remain functional over long periods, without these specific
concerns, will provide a leap in versatility/applicability. The project targets
the use of superhydrophobic materials in combination with semiconductors
to prevent surface contamination. Superhydrophobic materials demonstrate
self-cleaning properties, whereby water droplets (e.g. rain) remove surface
contaminants by a mechanism termed; ‘the Lotus effect’. This would enable
continual gas sensing functionality (or device functionality) with periodic
exposure to water flow across the surface. While also preventing wetting
of the surface, which would also interfere with molecular sensing.
Superhydrophobic materials require two surface properties;
(i) a high surface roughness (micro/ nanoscale),
and (ii) and inherently water repellent surface chemistry.
The proposed architecture will utilise highly rough semiconductor materials,
with a hydrophobic modification to the surface chemistry – resulting in
superhydrophobic properties. The target material demonstrates partial
functionalisation of the semiconductor material, limited to the top surface.
This provides elevated water repelling properties, while maintaining a
portion of uncoated semiconductor surface for continued functionality (e.g.
gas sensing).
Objectives (Program of Study)
The project objectives are strategically organised to provide the highest
potential for success.
The key objectives and organisation of the research project is presented below:
NTHU (Months 0-24):
The Chemical Vapour Deposition (CVD), and materials characterisation
of semiconductors.
High surface roughness semiconductors.
Functional materials testing (e.g. gas sensing). During this period, the mandatory NTHU postgraduate courses
(detailed at the end of this document)
will be undertaken by the student.
UoL (Months 24-48):
Superhydrophobic materials via CVD.
Surface functionalisation of high surface roughness semiconductors.
Generation of superhydrophobic semiconductors.
Optimisation of functional properties.
Real-world materials testing – in collaboration with NTHU collaborators.
Collaborator Suitability
The partnership demonstrates key areas of complementary skills and capability.
The NTHU supervisor (Prof. Yu-Lun Chueh) has extensive experience in the
fabrication, characterisation, and functional testing of semiconductor materials.
Prof. Chueh’s laboratory includes advanced materials testing (including; gas
sensing flow detectors), and characterisation facilities (including; high-
resolution
transmission electron microscopy) which are essential to the proposed research.
The UoL supervisor (Dr. Colin R. Crick) specialist area also focuses on
materials
fabrication, characterisation, and testing. However, this is dedicated to the
manipulation of surface microstructure, and surface chemistry – including
superhydrophobic materials. Dr. Crick is based in the Materials Innovation
Factory (UoL), which includes access to surface chemistry testing
facilities
essential to the project (including; confocal Raman spectroscopy, and
wettability measurement).
Both UoL and NTHU supervisors utilise the deposition of functional thin
films in their research, and as a result share many associated interests
– this includes the use of CVD for materials fabrication.
The project requires the development of novel CVD semiconductor
deposition processes. This initial development will take place in the
first part of the PhD (in NTHU), however can be directly transferred
to UoL facilities in the latter part of the project. A collaborative
utilisation of
research facilities is envisioned for the entire project.
Courses/Modules (NTHU):
Students need to finish core courses during the staying in NTHU.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.114.18.53
※ 文章網址: https://www.ptt.cc/bbs/PhD/M.1556858331.A.D30.html
... <看更多>