🔥 NT330 特價中
課程已於 2021 年 8 月更新
學習資料科學、資料分析、機器學習(人工智慧)和 Python 與 Tensorflow、Pandas 和更多 !
本課程的主題包括 :
資料探索與視覺化
神經網路和深度學習
模型評估與分析
Python 3
Tensorflow 2.0
Numpy
Scikit-Learn
資料科學與機器學習專案和工作流程
在 Python 用 MatPlotLib 和 Seaborn 做資料視覺化
轉移學習( Transfer Learning )
影像辨識和分類
訓練/測試並交叉驗證
監督學習 : 分類、迴歸和時間序列
決策樹和隨機森林
整體學習( Ensemble Learning )
調整超參數( Hyperparameter Tuning )
採用 Pandas 資料框解決複雜任務
採用 Pandas 處理 CSV 檔
採用 TensorFlow 2.0 和 Keras深度學習 / 神經網路
使用 Kaggle 並進入機器學習競賽
如何呈現你的發現並讓你的老闆印象深刻
如何為你的分析清理並準備你的資料
K 最近鄰( K Nearest Neighbours )
支援向量機( Vector Machines )
迴歸分析( Linear Regression/Polynomial Regression )
如何運用 Hadoop、Apache Spark、Kafka 和 Apache Flink
如何用 Conda、MiniConda 和Jupyter Notebooks 設定你的環境
配合 Google Colab 採用 GPUs
https://softnshare.com/complete-machine-learning-and-data-science-zero-to-mastery/
Search
深度學習模型評估 在 物件偵測模型評估 - YouTube 的美食出口停車場
物件偵測(object detection)是指在影像中,利用長方形的框標出物件的位置,並針對該物件進行分類,也同時輸出該分類的機率值。在這段影片中, ... ... <看更多>