#微冷 【ㄌㄩㄝ】
沒錯,這次的主題是 ㄌㄩㄝ,吐舌頭。
不知道各位有沒有想過為什麼人可以吐舌頭呢。我們給讀者A一次答錯的機會——嗯,因為舌頭有肌肉?哎為什麼我每次都要這樣自導自演。 這次小編科宅就說自己吧。
我運用我的舌頭講了三十載的白痴話,才學會惹閉嘴。我也被考過跑台,背了舌頭的相關的神經血管肌肉淋巴,感覺是傳達到第幾對腦神經動作是由第幾對控制等。但我 從 來 沒 有 仔細想過,舌ㄦ頭具體是怎麼動。
當然哺乳類的舌頭很靈活的,可以變圓變平捲起來皺起來顫動拍打。具不可思議語言能力的人類更是擅長用舌頭阻礙口腔的氣流,產生出各種離奇的子音,ㄅㄦ棒,得ㄦ隆冬瓢一瓢。
但我們先不要往困難處想,先想最單純的一件事:為什麼舌頭可以往前施力啊。
應該很多讀者在這仍感疑惑。嗯?科宅在煩惱什麼。答案不是理所當然嗎,肌肉往哪施力就哪施力咩。
喔好好好,還缺一個先備知識,才能把各位逼入那精美的瘋狂混亂的邊緣嘿嘿嘿哈……那就是,所有的肌肉的用力都是「收縮變短」「收縮變短」「收縮變短」。無論橫紋肌、平滑肌甚至是心肌都是。動物身體裡 並 不 存 在 一種肌肉,用力是會伸長頂出去的。但為什麼舌頭.....ㄌㄩㄝ,ㄌㄩㄝ......等等它剛明明就伸長了。
時間寶貴我就不賣關子了。如果各位小學有快樂地在夏天清涼地浪費過自來水,即:在校園園遊會做過水球大戰的攤位,和狐群狗黨一起灌過(尤其是長條狀的)水球,必定會體驗長條水球的一個特性:四周用力擠,它就會往兩端伸長。
道理很好懂,因為水「不可壓縮,體積固定」所以擠壓讓水球變細的話,就必定要往兩端伸長以維持總量。
由於舌頭的中心也有類似的一包液體存在,而有一群舌內肌肉是呈輪匝(環)狀排列,縮短/擠壓它的時候產生的液壓就會往前頂了。謎底揭曉。當然舌頭還有其他一百種造型,是各種橫直交錯的肌肉纖維縱橫捭闔此消彼脹的綜效,就不更深入考慮了。
插曲:本文本來是想配愛因斯坦吐舌頭的照片,但顯然那是版權所有翻印必究故不行。
知識的威力是易於推廣,聞一可以知十。以上「灌水球」的機制的科學術語,叫作「肌肉液壓」(muscular hydrostat)。除了哺乳類的舌頭,蛇的舌頭(蛇信)外,大象神乎其技的靈巧象鼻,與軟體動物的肢體(就是腕足和觸手)都根據一樣的原理而伸縮自如。
至於橡膠人魯夫,我不知道他伸縮時體積有沒有維持恆定,故不能確定他是否也是肌肉液壓驅動的 XDDD 全文完。
*肌肉液壓,和單純的充入氣或液體導致膨脹的液壓又不一樣。我想到的是蛾類的毛筆器,紐蟲的吻(口器),海蛞蝓 Melibe viridis 的頭部,和鄉民的30cm。
此外,植物和真菌利用滲透壓(膨壓)操控破石千斤頂的技能更妙,參考拙文〈南瓜們,要胸懷大志!〉。
圖源: Johannnes89@WikimediaCommons
Golden Retriever, 7 years old. CC BY-SA 4.0 commons(.)wikimedia(.)org/wiki/File:Golden_Retriever_2019.jpg
液體不可壓縮 在 Facebook 的最佳解答
一朝被鳳梨咬,十年絕口不吃。鳳梨一直是我的飲食苦手清單之一,但出來混,總是會相遇到。
⠀⠀
土鳳梨酥之亂首當其衝,其實加了那麼多糖的鳳梨餡也不會刺舌,但心裡的坎總是難以跨越,一次還買了好幾家做評比,光是微熱山丘就從台灣吃到日本,日本版的酥皮用的是 Echire 奶油 ( 沒用冷知識 get !
⠀⠀
法式甜點總是愛用鳳梨表現清爽明亮的一面,每年夏天老是看到 「 鳳梨 x 椰子 」的定番款蛋糕,逃都逃不掉。相較同樣都是酸甜調性的檸檬,鳳梨能表現更多的熱帶風情。搭配組合香蕉、香草、椰子、芒果、柳橙一起吃,感覺人都到長灘島了。
⠀⠀
就算吃飯也沒能逃過,對糖醋排骨又愛又恨,雖然排骨才是主體,但鳳梨提味不可或缺。
⠀⠀
最高級的鳳梨香氣絕對是陳年帕馬森乾酪。陳年兩年後才有的沙質結晶與鳳梨香氣完全讓人信服,磨粉配義大利麵,或是削薄片拌沙拉,只要加一點,整個餐桌質感瞬間升級。
⠀⠀
出來喝酒也避不開,熱帶風情 Tiki Bar 酒單滿滿都是鳳梨和蘭姆酒的天作之合,直接給你一整顆鳳梨的調酒。
⠀⠀
⠀⠀
---
⠀⠀
⠀⠀
這個月的鳳梨之亂我沒搶著上車,先把上下游、報導者等等來自各方的鳳梨報導都讀了一遍,耐心等到清明節後鳳梨開始大產的日子,才跟旺萊獅的勝哥拿了幾顆新鮮鳳梨。
⠀⠀
一般鳳梨生長期至多18個月,手上這幾顆居然長達30個月的自然生長,簡直成了鳳梨精。口感清脆又紮實,奶味與甘甜交織,風味滿盈,比日本壓縮機還稀少,時間換來的美味。
⠀⠀
一直在想為什麼沒能在精品水果平台市場看到強調兩年生以上的鳳梨?長時間飼養的雞肉豬肉品牌都有了,而且常駐大賣場。
⠀⠀
水果單獨推品牌會擠壓到其他水果的消費者購買力。一般家庭買水果的扣打與份量就那樣,買了鳳梨就壓縮了其他水果的消費,再沒多久等到芒果與荔枝大出,到時鳳梨又被遺忘了。
⠀⠀
所以還是必須要顧及「 #水果加工 」這塊才能長期穩定消費。
⠀⠀
⠀⠀
---
⠀⠀
⠀
「 你知道吃一顆鳳梨酥就相當於吃掉1/4顆鳳梨嗎?而一杯鳳梨冰茶,也用了1/10顆的鳳梨!就在談笑間喝茶配點心,不知不覺、隨時隨地都能幫忙台灣鳳梨,這比一時拚命吃生鮮鳳梨更能持久!」― 上下游 《 一杯鳳梨冰茶,讓台灣鳳梨逆轉勝!八卦山小工廠進軍全球的秘密 》
⠀⠀
加工用的鳳梨餡與農民簽訂契作,能保障農民在鳳梨的18個月生長期中有穩定且長期的收入。鳳梨酥沒有鮮果的保存與農藥蟲害問題,鳳梨果醬做成水果茶,人在國外也能用一杯茶感受台灣鳳梨獨有的細膩風味。
⠀⠀
威士忌達人林一峰在與馬力歐與你喝一杯的節目裡更提到,希望能由政府帶領,在全台各個水果產地就又近設置烈酒蒸餾廠。
⠀⠀
從古至今,世界各地都有用製酒的方式處理農產品過剩的情況,台酒 TTL OMAR 單一麥芽威士忌獨有的柳丁桶與荔枝桶便是用釀製水果酒的橡木桶來過桶,創造出台灣威士忌獨有的熱帶水果風土特色。
⠀⠀
哎又寫太長了,反正我邊吃鳳梨邊寫,台灣鳳梨好讚讚。
⠀⠀
⠀⠀
---
⠀⠀
⠀⠀
慶祝烘焙最近推了兩個鳳梨產品。
⠀⠀
「 #台灣好棒水果三明治 」:
將金鑽鳳梨與台中香蕉,夾入巧克力吐司中。鳳梨的酸甜與多汁與巧克力吐司產生了對比口感,香蕉軟Q香甜的風味與巧克力吐司成為一體,水果適時的加工,總是能產生更多別於鮮果的驚喜。彷彿生吐司的柔軟口感,也只有麵包專門店才吃的到。
「 #鳳梨明太子比薩 」:
以佛卡夏麵包為主體,搭配台南關廟金鑽鳳梨,除了濃郁明太子醬,還搭配了水牛起司與煙燻起司,各種鮮味滿溢,超級推薦。外面的夏威夷披薩我不太行,但慶祝烘焙這個我可以,總歸還是要從好的原料開始。
⠀⠀
搭配的酒是 ARRAN Port Cask Finish 愛倫單一麥芽波特桶威士忌,也是果乾香氣大集合,液體狀的法式柑橘軟糖,哎看我多愛水果。
⠀⠀
⠀⠀
⠀⠀
#橡木桶洋酒
未成年請勿飲酒_喝酒不開車
液體不可壓縮 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
液體不可壓縮 在 Re: [題目] 可壓縮流和不可壓縮流- 看板Physics - 批踢踢實業坊 的美食出口停車場
原文恕刪~
先來分清楚 流體(fluid) 和 流場(flow)的差別
流場是我們觀察到 由流體流動所造成的現象
流體力學(fluid mechanics)雖然名稱裡有"流體"
但是這門學問研究的對象不是流體本身
而是"流場"
好~
現在來分辨一下它們的性質
黏性μ 密度ρ 可壓縮性τ ...等 這些是"流體的性質"
而
層流 紊流 內流場 外流場 理想流 可壓縮流... 等 這些是"流場的性質"
當我們談 水 和 空氣 時
我們的對象是"流體本身"
世界上沒有真正"不可壓縮"的物質
差別只在於你要花多少力氣(能量)去壓縮它
所以任何流體都具有可壓縮性τ
但我們知道 空氣比較容易被壓縮
水本身並非不能被壓縮 而是非常非常難壓縮 需要的壓力P極大
所以在一般情況下
我們將水"視為"不可壓縮流體 空氣"視為"可壓縮流體
講完了流體
現在來看"流場"
那甚麼是 可壓縮流(場)?
簡單 白話地來說
"流場中流動的速度快到可以造成流體密度的變化"
從能量觀點來看
流場中的流速越快
表示整個流場具有越大的能量 可以去讓流體的可壓縮性τ顯現出來
然後 可壓縮性 -> 體積變化 -> 密度變化
那要多快?
記得是 馬赫數(Mach)約大於等於0.3 就能將"流場"視為可壓縮的
馬赫數的定義是 V/c 流速除以音速
音速其實就是壓力波傳遞的速度
所以
"水"的流動 有沒有可能形成一個 可壓縮流場?
可以的
只是水中的音速比空氣中大 (水中音速約為空氣中4~5倍)
所以要達到 Mach >= 0.3
會比空氣難上許多
以目前人類的生活經驗
流動速度能達到一個"可壓縮"的流場 裡面流動的流體通常為氣體
一個"不可壓縮"的流場 流體則有可能是氣體 或液體
還有
可壓縮流(場)是指流速快到足以影響密度變化
但反過來 一個有密度變化的流場 不必然是可壓縮流(場)
例如 燒開水時鍋子裡的水對流
是因為"密度變化" 產生浮力驅動流體流動
但這個密度變化不是因為流速很快造成的
很明顯
燒開水的流場不會是一個可壓縮流(場)吧
另外 div(V) 在流場裡代表的物理意義是
一個fluid element的體積變化率 (沒有source/sink的情況下)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.43.130
... <看更多>