【張旭網紅老師計畫第二期招募中】
⠀⠀
想做個人線上教學品牌的老師們
我相信現在正是適合發展線上教學品牌的時候了
⠀⠀
撇開能發展自媒體的技術和工具越來越強大不說
疫情讓實體補習班遭受不小衝擊
而且有一些真正在做線上的老師
已經取得一定程度的成功了
⠀⠀
為什麼說是真正在做線上的老師?
因為過去在做線上教學的老師
絕大部分並沒有線上品牌營銷的觀念
他們大多只是把課程放到網路上
這樣當然比真正在做線上的老師少了很多要素
⠀⠀
最簡單來說
很多老師都很會講課
但如何讓學生有記憶點
(不是公式或口訣那種簡單的東西)
(而是能讓學生在茫茫頻道海當中看見自己)
(例如搜尋你的專業關鍵字就能找到你而不是你的名字)
(或例如每年到一定時間你就會在學生群當中有討論度)
那就很有眉角
絕對不是只要把內容放到網上就能達成的事
不然早就很多這樣做的老師很快就有名起來
⠀⠀
然而並沒有
不是嗎?
⠀⠀
我看過很多老師一開始做線上雷聲很大
一開始衝流量速度還算快
但往往到了根本還不足以一提的時候就再也成長不了了
這是為什麼我想答案很簡單
那就是在消耗到實體的人脈資源以後
老師或團隊本身打造線上教學品牌的招式已經沒了
而且或許他們根本就不知道怎麼做才對
⠀⠀
但我知道
⠀⠀
我的教學品牌從 2020 年 3 月建立
經營不到一年 YouTube 頻道就破萬訂閱
一年多就創立了線上課程平台【張旭無限教室】並開始營利
一年半就取得了臉書粉專藍勾勾
同時也開始建立第一期網紅老師團隊
今年預計會有十位左右的老師會在我平台上架課程
目前合作的單位除了幾家大間的實體補習班、
幾位真正有在做線上教學品牌的老師以外
還有一些網紅資源和電商資源
(有在關注我的人應該很清楚我的那些合作夥伴是誰)
⠀⠀
我或許不比某些已經發展起來的實體補習班或產業
但如果提到線上教學品牌的經營
我想在台灣,張旭這個品牌的發展速度應該是前幾快
而且如果我的方向正確
明年要擴大到一定程度應該是沒有問題
因為我目前背後有兩個合作夥伴
一間公司資本額 2000 萬
另一間公司資本額 1 億
前者提供我實體補教資源的合作以及發展線上補教的支持
後者則提供我網紅、網美人脈和電商相關資源
⠀⠀
好了,屁這麼多
你可以覺得我都是在自吹自擂
那也沒關係
我只是覺得,如果沒有兩把刷子
那我不敢在外面嚷嚷自己能夠帶大家做線上教學品牌
⠀⠀
如果你想打造自己的線上教學品牌
當然也可以單打獨鬥
但通常都會比較慢而且比較累
⠀⠀
我剛做完第一期網紅老師計畫
目前正在招募第二期網紅老師
⠀⠀
如果你也想跟著我們一起衝
快速發展個人線上教學品牌並加入我們的聯盟
歡迎私訊我
並加入我的臉書社團:網紅老師鍊成術 (2021)
⠀⠀
但重點,如果你只是想來我這邊放課程賺被動收益
或是很忙很難配合培訓課程或聯合活動
那就不用私訊我了
⠀⠀
因為我需要的
是一群想紅想瘋了而且能夠一起團隊作戰的夥伴
只要你夠想紅也願意付出時間和力量努力
我可以保證你未來能在我和我合作夥伴發展的體系裡
成為台灣第一間線上補習班的王牌老師
⠀⠀
當然你還是可以覺得我在唬爛
但我當然要講得這麼誇張
但到底誇張和真實程度比例是多少
我在怎麼解釋也沒用
反正就像去年我在發表自己的計劃的時候一樣
也是一堆人覺得我誇大其詞
然而這些人今年都不敢講話了
⠀⠀
總之
如果你想做線上教學品牌
相信我、也願意付出時間努力
私訊我
就這樣
⠀⠀
喔對了,補充說明一下
關於拆成的部分
我這邊是這樣
除了在我這邊放課程會拆成以外
其他個人品牌導購力所產生的收益
我一概不收
另外課程的拆成也會隨著在我這邊放的課程越來越多
而所收到成數會越來越高
⠀⠀
至於詳細拆多少
基本上,會讓你驚訝
因為我不太需要靠拆你們的成賺錢
我個人就要張旭微積分可以銷售
而且還有其他副業在跑
沒必要從老師們身上吸血
⠀⠀
我只在意努力程度和能否團隊作戰
同時也有1部Youtube影片,追蹤數超過124的網紅周小毅,也在其Youtube影片中提到,...
微積分基本公式 在 數學老師張旭 Facebook 的最讚貼文
【極限的嚴格定義?大一新生的大難關】
.
∀ ε > 0, ∃ δ > 0, s.t.,
∀ 0 < | x - a | < δ, | f(x) - L | < ε
.
這一大串看似咒語的數學敘述
是很多大一新生初學大學微積分的難關
.
而那一大串咒語所代表的意思
就是當 x 趨近 a 時,f(x) 會趨近 L
.
剛高中畢業的同學或許會覺得奇怪
函數的極限,不是看左右極限就好了?
.
其實不然,像下面這個例子:
lim_{x→0} sin(x) / x
其函數圖形不好畫
所以不容易直接從圖形看出左右極限
.
因此數學家才需要發展極限的嚴格定義
就是最前面看到的那串咒語
.
從該定義出發
先解決基本函數的極限
然後證明函數的極限公式
再搭配一些計算技巧和定理
最終就能靠計算得到大部分函數的極限
.
像剛剛提到的那個例子也行
.
知道那個例子的答案是多少嗎?
知道的同學下面刷一排答案唄~
.
#數學老師張旭
#張旭微積分
#微積分 #數學 #數學補習 #讀書
微積分基本公式 在 數學老師張旭 Facebook 的最佳貼文
【為什麼學微積分要先學極限?】
.
微積分是一門關於微分與積分的學問,微分是探究瞬間變化程度的學問,積分是探究一範圍內累積量值的學問。例如一運動物體在某時間點的位置瞬時變化率(瞬時速度),那就需要微分;又例如計算一區域在地圖上的面積,那就需要積分。當然如果前面提到的運動物體是等速度運動,又或者在地圖上的區域其形狀恰好是三角形或矩形,那就可以用基本數學公式得到運動物體的瞬時速度和區域面積;但是,一般而言,運動物體不會是等速度運動,而地圖上的區域大多是不規則的,因此,微分和積分的技術就成了解決這類問題的關鍵。
.
不過,既然是要學「微分」和「積分」,那關「極限」什麼事呢?是這樣的,在有微積分以前,人類是沒有公式來處理不規則變速運動的物體的瞬時速度,也沒有公式來計算不規則圖形的區域面積。面對這樣的問題,我們只能從過去的經驗和既有的公式來思索,看看是否可以透過一定程度的調整來解決問題。
.
就瞬時速度而言,我們所希望的是能夠計算出一運動物體在某一個時間點的瞬時速度,也就是在某一時間點的位置變化率。你可以試想,一個正在用不規律速度行駛的車子,他前進的速度本來就會有時快、有時慢,那麼,我們是否有能力將這個車子在每一個時間點的速度都賦予一個量值呢?如果這個量值越大,就代表速度越快,反之代表速度越慢?這乍聽下來好像可行,但在還沒有微積分的時代裡,若再進一步細想下去,就會覺得很怪。因為要計算一運動物體的速度,就需要該運動物體在「兩個時間點」的位置;然而,瞬時速度只關心運動物體在「一個時間點」的狀態。也就是說,實作上在求瞬時速度的時候,會遇到一個難題,那就是只有一個時間的位置,所以無法求速度。
.
為了解決這個問題,我們退而求其次地,在所關心的時間點以外,物體運動的時間範圍內,離所關心的時間點附近再取一個時間點,然後用這兩個時間點的速度,來「暫時」取代該物體瞬時速度。之所以用「暫時」這兩個字,顯而易見地,就是這個量值一般而言並不應該就是我們要的瞬時速度,因為只要多取出來的時間點不一樣,就很容易算出不一樣的值。但這個辦法並非沒用,而是在微積分還沒開始發展的那個時代裡,我們必須引進一個新的概念,那就是「極限」。
.
既然在所關心的時間點外在取一個時間點來算的速度並無法做為瞬時速度,那麼如果把另外取的時間點無限逼近所關心的時間點呢?這是一個相當好的想法,雖然可能還有很多細節需要處理,但基本上這個逼近的動作,已經解決了算瞬時速度的問題,這是因為直觀上不管大家一開始所取得的所關心的時間點以外的時間點有多不一樣,都會因為做了「逼近」這個動作而使最後的所得到的結果一樣(當然這必須證明「逼近」這個動作最後算出來的答案是唯一的,而這部分確實後來的數學家有順利解決,我們在此暫不討論,也許以後有機會再專門寫一篇關於這主題的文章)。
.
因此,後來我們就用這個方案來算運動物體在某一時間點的瞬時速度,而這個方案裡面的計算方式,在經過數學家們的檢驗和嚴格化以後,就發展成了日後我們講的微分,而該計算方式裡面所提出的「逼近」的概念,其動作最後也就是我們講的「取極限」,所以為什麼在學微分之前要先學極限?因為微分這個動作,其本質就是取極限的過程。
.
積分也有類似的過程,為了算不規則的區域面積,我們先把這個區域分割成很多個可用簡單公式計算的矩形(邊界的地方可以自訂一個規則超過一點或縮小一點),然後先用這些矩形的面積總和「暫時」代替原本要求的區域面積;但很顯而易見地,這些矩形面積和並非原本要求的區域面積,所以我們就把這些矩形分割得越來越細,只要這些矩形能夠分割得越細,他們的面積總和就會和原本要求的區域面積越來越接近,姑且不論其實作的細節,這個透過無限分割使矩形面積和逼近原本要求的區域面積的過程,也用到了「極限」的概念。
.
所以如果你打開微積分的課本,卻在一開始看見要學一整章的「極限」時,請不要意外,因為學數學就像蓋一棟樓一樣,你或許期待微積分這棟樓能建得高大,但別忘了凡是越高大的大樓就需要越強健的地基,而「極限」就是微積分這棟大樓的「地基」。把極限學好,後面才有足夠的內力和體質去學習和發揮微分和積分這兩大絕學。
.
而要學習極限,雖然有一段路要走,但凡事都可以先從最簡單的內容開始。我在 2020 年時拍攝了微積分的系列教學影片,如果想從零開始學習微積分的話,可以先從我的極限篇裡面的第一部影片「極限的直觀定義」開始看起,我把這部影片的連結貼在下面留言處。
.
這系列影片基本上有觀念講解、精選範例和補充教材,近期我會開始陸續上傳到這裡,但不是每一部影片都會寫文章來搭配,所以如果你想跟著我上傳的速度一部一部看,而且不漏掉系列裡每一部影片的話,可以關注我在西瓜視頻、騰訊視頻和優酷視頻的頻道;如果你想一次看完我全系列的影片的話,可以關注我在 YouTube、bilibili 或 Pornhub 上的頻道,上面已經上傳了張旭微積分全系列影片。另外這系列影片都有講義電子檔可以搭配使用,如果你想要取得該電子檔的話,請幫我按讚這篇文章和這個粉專、分享這篇文章,並幫我到我的臉書粉專評論處寫個評論,然後私訊我的臉書粉專,我的夥伴就會回覆你講義電子檔的連結。
.
感謝你的觀看,希望這篇文章對你有所幫助,有任何問題或想法也歡迎在下面留言告訴我。另外,本文章同步發佈於數學老師張旭的 YouTube 頻道社群、微博、今日頭條、Medium 和 HackMD,若你也有上面提到的那些帳號,歡迎按讚、分享和關注!
微積分基本公式 在 [佛腳] 微積分之微分的基本- 精華區AU_Talk 的美食出口停車場
微積分考前速記
注意,本PO針對對微積分一竅不通、鴨子聽雷者。
所有的重點著重考試的計算。
所以裡面沒有申論題或證明題,不可能會討論微積分基本定理這些題目。
或許會有些人覺得很簡單,
但我也是到大二(還是微積分莫名PASS後)才……往事就讓它過去吧~
希望對大一學弟妹們的期中有幫助~
因為bbs上無法用太複雜的符號,會儘量附加中譯說明。 ps:次方 = ^。
盡量拿紙筆寫下才不會被符號搞混^^
--
(一)微分
f(x)= a(x^n) 中譯:a乘以x的n次方
f'(x)= an[x^(n-1)] 中譯:a乘以n(原次方移下)乘以x的n-1次方
ex:
f(x)= 3(x^4)
f'(x)= 3*4*(x^3)= 12(x^3)
(二)常數的微分 ╭────────╮
│ 兩者合體 │
f(x)= C(表示常數) │ │
│ f(x)= 2(x^3)+5 │
f'(x)= 0 │ f'(x)= 6(x^2) │
╰────────╯
ex: 基本中的基本,希望有好一點的老師
f(x)= 3 能配個40分在這裡(做夢吧~)
f'(x)= 0
--
(三)對數的微分
f(x)= ㏑[g(x)] 中譯:g(x)函數取自然對數,g(x)可以是x的任何形式。
g'(x)
f'(x)= ───── 訣竅:分母是原封不動的原函數,分子為原函數的微分。
g(x)
╭──────────╮
ex: │㏑(a*b)= ㏑a+ ㏑b │
f(x)= ㏑[3(x^2)+4] │㏑(a/b)= ㏑a- ㏑b │
│㏑1= 0 │
6x ← 3(x^2)+4 的微分 │㏑(x^n)= n*㏑x │
f'(x)= ─────── ╰──────────╯
3(x^2)+4 (原來的) ↑對數的"次方項"能往前搬喔~
--
(四)指數的微分
f(x)= e^g(x) 中譯:e的g(x)次方
f'(x)= e^g(x)*g'(x) 中譯:e的g(x)次方乘以g(x)的微分
訣竅:原來指數函數完整不動乘以指數次方項的微分
ex:
f(x)= e^(3x+2)
f'(x)= e^(3x+2)*3= 3*e^(3x+2)
因為怕太亂不敢用太複雜的數字,
基本上只要按照訣竅走就沒錯了。
--
(五)鏈鎖律 chain-rule
重點!以後不管看到什麼函數形式都得記住!!
一定得由外往內一層層微分,這樣才不會亂掉!
f(x)= [g(x)]^n
f'(x)= n* {[g(x)]^n-1} * g'(x) ←3.最後再乘以裡面函數的微分
↑  ̄ ̄ ̄ ̄ ̄↑
1.n在最外頭, 2.裡頭函數不變,
次方往前乘。 次方項減一。
訣竅:就像剝橘子一樣,一定要由外往內,在處理外面次方項時,千萬不要動裡面函數。
--
ex:
f(x)= 1/√[2(x^3)+3x] 中譯:分子是1,分母是2乘以x的3次方加上3x。
先稍作整理變成
f(x)= [2(x^3)+3x]^(-1/2) 中譯:開根號是1/2次方,在分母則是負號。
(應該都知道吧.....)
f'(x)= (-1/2) * [2(x^3)+3x]^(-3/2) * (6x+3)
步驟1↑ ↑步驟2 次方減一 ↑步驟3
(完整不動!!) (裡面微分)
寫完後再整理一下就是答案了,整理時小心計算錯誤。
--
(六)乘法模式微分
f(x)= g(x)*h(x)
f'(x)= g'(x)*h(x) + h'(x)*g(x)
訣竅:微前乘後 加 微後乘前
(七)除法模式微分
f(x)= g(x)/h(x)
g'(x)*h(x) - h'(x)*g(x) 微上乘下 減 微下乘上
f'(x)= ───────────── 訣竅:────────────
[h(x)]^2 分母平方
--
五六七合體常見試題
╴╴╴╴╴╴╴╴╴
√ 4(x^2)+3x 4(x^2)+3x
f(x)= [ ─────── ] 整理→ [ ─────── ]^(1/2)
5(x^3)-7(x^2) 5(x^3)-7(x^2)
微上乘下減微下乘上↓已經算好整理後
4(x^2)+3x -20(x^4)+15(x^3)-24(x^2)+42x
f'(x)= (1/2)*[ ─────── ]^(-1/2)* { ────────────── }
5(x^3)-7(x^2) [5(x^3)-7(x^2)]^2
分母平方
═════════════════════════════════════
f(x)= (3x-5)[(-5x+2)^2]
f'(x)= 3*[(-5x+2)^2] + [2(-5x+2)*(-5)](3x-5)
微前 乘後 加 微後 乘前
(↑有個鏈鎖律)
最後整理一下就是答案,我這麼寫就是不想算了……|||
--
不好意思手邊沒有題目所以數字可能設計的不太好……
我在看BBS時最不喜歡數學了,因為不像Word那麼好弄qq
希望可以被看的懂……如果有錯誤請指正^^
如果真的覺得太勉強就記住訣竅部分即可。
由外往內,乘除法、指數對數微分方式牢記,應該可以解微分80%以上的計算題了。
祝大家期中順利!
>>>會有人想要積分的速記嗎(光速逃XD)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.230.128.29
※ 編輯: fff0722 來自: 61.230.128.29 (11/03 21:24)
... <看更多>