在台東鹿野高台的 #台灣國際熱氣球嘉年華,因為颱風所以提早在9號進行了最後一場秀。
有些留言說:「颱風不是11號才開始影響嗎?為什麼10號清晨和傍晚的場次要取消?」
我不是熱氣球專家,
但剛好前幾天我訪問了和熱氣球最熟悉的
【熱氣球飛行員】
也許裡面有一些答案。
《臺東慢漫遊主持訪談 EP07》
🌟第七位台東職人:#熱氣球飛行員 #林沅霆
「當初真的起心動念,想要搭熱氣球環遊世界!」
在台灣還沒有招聘培訓第一屆熱氣球飛行員時,
喜愛探險旅遊的沅霆自費50萬台幣,
靠著自己在澳洲打工度假所攢下來的經費,
考取成為飛行員;
而在隔年,適逢台東縣政府決定培育台灣的第一代熱氣球飛行員,
沅霆踏上了美國受訓,
駕駛熱氣球不再只是夢想,
而是真確能帶著他飛天的日常。
早上4:30就在飛行員休息室,
在指揮官簡報天氣狀況後,準備上工。
參與了氫氣球放飛測試的過程,
沅霆和指揮官告訴我,
熱氣球要能夠升空條件比想像中嚴格,
風向不能朝著山邊去、速度不能太快,
風力也不能太強,只要超過7節風就不能飛。
沅霆細心的幫我”翻譯”
「7節風大概就是機車時速14公里左右!
因為熱氣球的受風面積很大,
像是繫留體驗就要飛到30公尺的高度,
小小的風力都會造成很大的搖晃和安全問題。」
所以飛行員不只要駕駛,
更要能夠觀察、預測氣候情況。
除了體驗、飛行,更重要的是安全。
🌟熱氣球繫留體驗
這已經是我第四年在夏天時間一直往台東跑,
但這竟然是我人生第一次在 #鹿野高台 搭乘熱氣球!
向來喜歡高的我,真的很興奮!
(而且因為拍攝需要一天就搭了三次!
導演!以後有這種拍攝都叫上我~拜託!!)
搭在籃子裡,可以更容易感受到控制器的熱,
每次燃燒的火光很美,
熱氣球就帶著我冉冉升空。
(測試影片向後滑)
飛行員一面跟我說明這邊是中央山脈,
那邊是海岸山脈,
我們就在縱谷的高空看著日出的景色!
搭完之後,我興奮地問沅霆,
「你什麼時候要搭熱氣球環遊世界?」
「其實沒這麼容易啦!
搭熱氣球環遊世界比想像中貴,
甚至可以說是比搭飛機還貴!
首先,你得先買一顆屬於自己的熱氣球,
那大概就需要先準備300-400萬了,
更不要說燃燒器、工作人員、還要申請各國的空域飛行許可。
現在在台東鹿野帶著大家飛,
或是到國外的嘉年華,
帶著台灣的熱氣球去宣傳飛行!
我就很滿足了!」
PS
這次學到一個我覺得很有趣的冷知識,
熱氣球的球體上都有編碼,
那個其實就像是大家搭飛機,
每個飛機都有的編碼。
以後只要看到「B-加上五個數字」
就代表它是屬於台灣的熱氣球喔!
所以像是Hello Kitty球就是台東自己的,
今年沒看到沒關係,以後大家還是會看到她的!
給伊森開心到,
當助理順便體驗人生第一次熱氣球升空!
此刻影像 The Moment Production
夥伴們一起4:30摸黑起床辛苦了❤️
期待美美的成品~
#臺東 #鹿野 #熱氣球 #飛行員
台灣氫氣機車 在 生命中充滿無限可能 Facebook 的精選貼文
【氫碳夫】歲末年終,不只家裡要大掃除,連車子也該好好清潔一番囉!人會老,車子也是,每天陪伴通勤的車子,因車齡、怠速及種種因素,造成車子抖動、引擎聲變大、排廢氣、耗油、油門拖重感,卻因沒時間缺乏保養,為了延續愛車的使用壽命,不得不好好正視這個問題🤔🤔🤔
中台灣唯一到府服務的【氫碳夫-行動服務車】,不管是遊覽車、砂石車、拖車頭、轎車、重型機車、機車…所有大小車都有辦法用氫氣除碳,車子不需到維修保養廠,不論白天晚上外地出差皆可👌👌👌
❓為什麼要清除積碳?
因為汽油中無法燃燒完全的碳氫化合物會被燒成膠碳物,造成燃燒室積碳的情形,使得燃燒效率不佳進而發生爆震的情形,而這個狀況也會導致油耗增加及加速不順暢的現象。積碳也會讓燃燒室的壓縮比提高,進而影響引擎的效能,所以如有積碳的問題,就必須儘量清除🥺🥺🥺
氫氧清除積碳方式,主要是靠著一部國人自行研發的機器,利用超微氫氧分子技術,將高純度氫氧導入引擎,把長期堆積在引擎汽缸中的積碳軟化並完全燃燒,漸漸清除積碳,並從排氣管排出,好處是較沒有傷害引擎的疑慮,較具時效、也不用如傳統藥水洗需要再更換機油,目前這項服務依車型大小,每次時間只要約40~60分鐘😊😊😊
這次清除積碳後真的很有感,油門變的很輕,輕輕一踩差點飛起來,油耗表現也變的比較好了,真的蠻推薦大家試試,有興趣的朋友可以打電話詢問哦👌👌👌
氫碳夫(冠均)
☎0966115538
🆔Line:0966115538
🌎粉絲團: 氫碳夫
#氫碳夫 #氫氣除碳機 #到府服務 #預約 #不限車種 #節能減碳 #環保
台灣氫氣機車 在 媽媽監督核電廠聯盟 Facebook 的精選貼文
這是一篇蠻持平客觀的分析、說明..... 電動車和你想的不一樣:只是炒作?真的會造成缺電嗎?專家一次說清楚(12/30/2020 風傳媒)
"你應該知道的是:豐田汽車社長痛批,電動車若更加盛行,可能造成日本大缺電,此一說法引發外界熱烈討論。如果電動車滿街跑,到底會不會缺電?電動車只是炒作的話題嗎?作者以專業背景解釋,電動車對解決大城市嚴重空氣污染將有顯著成效,但能源轉型困境並未因此紓緩,能源問題人人有責,不能把責任推給政府。"
作者:曲建仲 / 台大電機博士,知識力專家社群創辦人
近年來空氣污染讓大家忍無可忍,溫室效應造成的氣候暖化日益嚴重,讓世界各國政府推出新的碳排放法規,不約而同喊出 2030或2040 年禁售燃油車的口號,許多車廠被迫積極開發電動車,彷彿電動車能夠解決人類的空氣污染與能源問題,豐田社長怒批世界各國政府力推電動車只是炒作,許多人可能認為那是豐田(Toyota)眼見特斯拉(Tesla)股價節節高昇而吃醋,所以電動車真的是未來環保的新希望嗎?事實恐怕和你想的不一樣?
電池的構造與原理
所有的電池都具有陽極(負極)與陰極(正極),基本上都是由陽極(Anode)發生的化學反應產生電子(Electron)與陽離子(Ion),電子流入元件可以推動元件工作,也就是我們所稱的電能,如圖一(a)示;陽離子則經由電解質穿越多孔性的隔離膜到達陰極,如圖一(b)所示;最後陽離子與電子在陰極(Cathode)結合,如圖一(c)所示。
電池的陽極(Anode):是我們所稱的「負極(Negative electrode)」。電池的陰極(Cathode):是我們所稱的「正極(Positive electrode)」。
兩者恰好相反,千萬別弄錯了唷!大家可能會好奇,為什麼會恰好相反來造成大家的困擾呢?因為化學家定義放出電子的叫「陽極」;而陽極放出電子,代表陽極必定帶負電(同性相斥、異性相吸),所以物理學家稱陽極為「負極」。
不同的鋰電池主要是陰極材料不同
不同的鋰電池其實主要是使用的陰極材料(正極材料)不同,目前最常用的陰極材料共有四種:鋰鈷氧化物(LiCoO2)、鋰鎳氧化物(LiNiO2)、鋰錳氧化物(LiMn2O4)、鋰鐵氧化物(LiFePO4),其中大家常聽到的「三元鋰電池」其實是陰極材料使用鈷鎳錳酸鋰三元化合物的鋰離子電池,其中三元是指包含鈷(Co)、鎳(Ni)、錳(Mn)三種金屬的化合物,而電解質主要是使用六氟磷酸鋰液體,負極材料一般是使用石墨。
固態鋰電池未來發展值得關注
由於現在的鋰電池所使用的電解質是液體,容易發生漏液汙染、易燃爆炸等問題,而固態鋰電池的電解質是固體,不會因為隔離膜破損就導致陰陽極接觸短路爆炸,而且固態鋰電池的密度和結構可以讓更多帶電離子聚集傳導更大的電流提升電池容量,此外固態電解質不可燃、無腐蝕、不揮發、不漏液等特性,不像傳統鋰電池的液態電解質含有易燃有機溶液,需要降溫、防撞擊、防穿刺等安全裝置。
電極材料與液態電解質容易完全接觸,但是和固態電解質接觸不如液體,造成介面阻抗過高,影響整體電池效能,而且固態電解質製程良率低價格高,仍然有許多困難。日本Toyota公司預計2022年推出全固態鋰電池的電動車,美國Fisker公司為固態鋰電池申請專利,能量密度可達傳統鋰電池的2.5倍,法國Bollore公司已經量產固態金屬鋰聚合物電池,德國Bosch公司收購美國Seeo公司研發固態鋰電池技術,QuantumScape公司的鋰固態電池號稱15分鐘可以充飽80%股價大暴漲,由於廠商投入資源研發未來發展可期。
電動車的普及有賴電力基礎建設
電動車要充電,但是如何充電是個大問題,像Gogoro的電動機車一個電池只有9公斤,使用者可以到電池交換站自行更換電池,但是Tesla電動車的電池重達500公斤以上,只能以定點充電的方式進行,即使目前的規格要求在1小時內完成充電,使用者是否能在加電站等1小時卻是個問題。
如果必須把車開回家在停車場充電,最大的問題是目前的電力基礎建設不足,假設大樓停車場有100個停車位,每個都設置插座,當100台電動車同時充電時,大樓的變壓器無法承受如此巨大的電流,因此整個電力基礎建設,包括:變壓器、變電所、高壓電塔都必須重新設計才能達成,聽起來就不是短期內可以做到的事,可能的解決方法是在大樓停車場建置大型儲能電池,當大量電動車充電時可以由大型儲能電池供電,考慮到成本與安全,大型儲能電池使用釩電池或鋁電池是未來可能的發展方向。
電動車不會排放廢氣 更環保而且節省能源?
由於我們的發電廠是以高壓交流電(AC)傳送到使用者家中,再以「電源供應器(PSU:Power Supply Unit)」轉換為直流電(DC)才能對鋰電池進行充電,如果使用的是交流馬達,則鋰電池供電時要再轉換為交流電(AC)給馬達供電,每一次的電源轉換效率大約80%~90%,因此這樣轉來轉去其實浪費許多能源。根據德國慕尼黑經濟研究院(IFO:Institute for Economic Research)發布的一份研究報告,考慮電動車的碳排放量時,如果將鋰電池的生產製造、能量轉換,以及供電過程中發電廠發電所排放的二氧化碳算進去,電動車的二氧化碳排放量會比傳統燃油汽車高。
根據IFO的資料,最環保的能源形式是使用「甲烷」,也就是我們家裡用的天然瓦斯,它與一般的「瓦斯車」類似,差別在目前瓦斯車使用的「液化石油氣」是丙烷和丁烷的混合物。以甲烷為主要動力的內燃機(引擎)可以使汽車減少碳排放量,而且甲烷裡含有的氮化物、硫化物等雜質更低,是汽車製造商可以採用的環保能源,搞了半天最環保的竟然是瓦斯車,看來豐田社長怒批電動車只是炒作算有幾分道理,不過瓦斯車還是會排放二氧化碳,無法解決溫室效應的問題。
電動車只能改善空氣污染 無法解決能源問題
充電站裡的電是那裡來的呢?還是由發電廠來的,說來說去,又回到了最原始的火力、水力、核能發電來提供,核能目前被社會接受的可能性很低,在台灣想蓋水庫都很困難了更別說水力發電廠,因此又回到最原始的火力發電,不論是使用天然氣或煤碳,最後還是免不了要造成空氣污染的,因此有人說電動車只是把城市裡的空氣污染,轉移到郊區發電廠而已。台灣目前全力推動太陽能與風力發電,這是應該做的,只是核能電廠要除役,太陽能與風力發電只怕用來補上這個電力缺口都不夠,沒辦法多出來給電動車使用。
汽柴油車與火力發電廠最大的差別,在於對污染物的控制,汽柴油車滿街跑到處噴廢氣,只能使用觸媒轉化器進行處理,由於價格與體積的限制,無法對廢氣有效回收處理;而發電廠是將廢氣集中處理,可以使用更昂貴體積更大的工業設備對廢氣有效回收處理,污染的確變低,因此使用電動車一定會減少城市的空氣污染,再加上近年來電池從製造方式到回收技術都快速進步,發展電動車仍然是重要的選項之一。
氫能與燃料電池被視為終極環保能源但是困難重重
傳統電池直接使用化學反應產生能量,優點是能量轉換效率很高(80%以上),但是充電需要比較長的時間;而使用燃料以內燃機(引擎)進行燃燒反應產生能量,優點是可以直接補充燃料,但是使用內燃機的能量轉換效率很低(30%以下),科學家開始思考,有沒有一種方法同時具有「電池」與「燃料」的優點呢?於是燃料電池從此誕生了。
燃料電池和傳統電池的原理相同,都是將活性物質的化學能轉換成電能,但是傳統電池的電極本身是活性物質,會參與化學反應;而燃料電池的電極本身只是儲存容器而已,並不會參與化學反應(觸媒只用來引發化學反應),必須將活性物質加入電池內,就好像我們的汽車補充燃料一樣,才能產生化學反應形成電能,是一種要補充燃料的電池,故稱為「燃料電池(Fuel cell)」。
儲氫技術價格偏高目前仍然無法擺脫石油
燃料電池使用氫氣與氧氣反應產生水,反應後排放的氮化物或硫化物極少,幾乎沒有任何污染,因此被視為終極環保的再生能源。但是燃料電池必須使用氫氣做為燃料。高壓儲氫技術如何把又大又重又危險的氫氣鋼瓶放在車上是個大問題;因此有國外公司開發出可以承受700大氣壓的航太複合材料儲氫瓶,可以取代氫氣鋼瓶,Toyota公司更在推出氫燃料電池車款Mirai,創下單次加滿氫氣可以行駛500公里的紀錄,已經是成功的商品了,那麼它的問題到底在那裡呢?
首先車上放了一個壓力這麼大的儲氫瓶是否安全是個問題,氫氣的來源則是更大的問題,大家都知道電解水可以產生氫氣與氧氣,問題是電解水產生氫氣的成本很高,而且這些電還是來自發電廠。為了降低成本,目前工業上主要是將碳氫化合物 (石油)以「 蒸氣重組」(Steam reforming)的方式分解生產氫氣,搞了半天還是要以石油做為原料,看起來人類要擺脫石油還真困難。
為什麼世界各國都訂定2030或2040年禁售汽柴油車?
很有趣的現象,世界各國都訂定2030或2040年全面禁售汽柴油車,為什麼是這個時間呢?主要還是覺得前面介紹的這些問題,包括充電站建置、電力基礎建設、新建大型發電廠,或是太陽能、風力發電等新能源開發,大約需要20年時間,因此選擇了這個時間點,問題是如果時間訂定了,卻沒有看到政府加蓋發電廠,那時間到了要怎麼辦呢?
不過各國政府爭先恐後這樣「宣誓」,還有一門不可言傳的心思,那就是老百姓對空氣污染已經忍無可忍,但是眼見要解決這個問題困難重重,宣誓「2040 年」禁售汽柴油車,等於是給老百姓一個交代,反正2040年是 20 年以後的事了,到時候站在台上的一定不是現在宣誓的這個人,這種只靠嘴巴說說就可以成功的「政績」,何樂而不為呢?
能源問題人人有責 不能把責任推給政府
經過前面的介紹,大家一定發現人類的能源問題沒有這麼簡單,政府該做的不只是靠嘴巴宣誓禁售汽柴油車,而是必須認真開始發展綠色能源。目前最大的問題在於:電價太便宜,造成使用者沒有節約用電的習慣,各種價格較高的「家庭能源管理系統」(HEMS:Home Energy Management System)乏人問津,電價如果真的大漲又會造成物價波動,受限於選舉與政治因素,要讓電價上漲也是困難重重,只能靠我們自己養成時時節約能源的習慣,才是最有效的方法。
責任編輯/周岐原
完整圖文內容請見:
https://www.storm.mg/article/3340151?mode=whole
♡