摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
協同效應生物 在 BusinessFocus Facebook 的最佳貼文
【#BF創新科技】人類健康是經濟發展的重要磐石,而攸關人類健康的生物科技是21世紀的新趨勢。作為大灣區核心城市的香港及深圳,軟硬件實力俱備,若能共同合作推進生物醫藥研發,必定能產生協同效應,提升區内競爭力之餘,更能助力中國應對未來種種挑戰。
有見及此,團結香港基金首次與内地兩所頂級智庫—中國國際經濟交流中心、中國(深圳)綜合開發研究院合作,將於7月26日於線上聯合發表題為《策動灣區港深引擎 孕育生物科技新機》的生物科技政策研究報告,著眼發展河套深港科技創新合作區,向中央及港深兩地政府建言獻策。請即報名,一同了解兩地合作發展潛力!
https://businessfocus.io/article/169910
日期 : 2021年7月26日
時間 : 1500-1700
形式 : 網上直播
語言 : 普通話
登記 : https://bit.ly/2UtxTPV
#團結香港基金 #中國國際經濟交流中心 #中國深圳綜合開發研究院 #生物科技 #河套深港科技創新合作區 #大灣區產業 #新興產業
協同效應生物 在 健身教官-應充明Jimmy Facebook 的最佳解答
《是我把你蠢哭了嗎?》
我原來以為這是一本處理人際關係與情緒管理相關的書. 開始閱讀了以後才發現, 整本書是在解釋人類的大腦- 一台及其精密卻又原始的機器
根據神經科學家保羅.麥克蘭所提出的理論, 他把大腦分成三層:
爬蟲腦 (底層): 這是最基礎的部分, 從幾億年前的生物繁衍就開始運作, 負責維持基礎的生命功能, 引發戰或逃的立即反應
哺乳腦 (中層) : 隨著生命的進化, 哺乳類開始發展輸了更複雜到大腦部份, 出現了邊緣系統 (海馬迴與杏仁核), 下視丘 (分泌激素與控制自律神經系統)
靈長類腦 (上層) : 這屬於最高級的大腦區塊, 擁有思考, 判斷, 語言的能力, 大腦皮質的構造發展是生物 (特別是人類) 最後衍生出來高級腦
縱使過了幾億年的演化, 人類主宰了地球, 發展了高度文明, 甚至還有能力進一步探索地外生命, 但是以時間而言, 靈長腦 (新腦) 出現的時間尚短, 人類很大一部分的行為在本能上仍然受爬蟲腦 (舊腦) 驅動, 而夾在兩者之間的哺乳腦 (中腦) , 則是裡外不是人, 常常會因為新舊腦的拉扯而崩潰..
所以作者將大腦比喻成我們家裡的電腦: 你的機器大概是二三十年前的型號, 可是在這之間你不斷的給它安裝了新的系統, 甚至不斷升級. 可是偏偏機器的運作方式常常會跟新軟體相互牴觸, 同時電腦內建的的演算法還會依照本身對於使用者喜好的判斷來直接執行所有功能… 如此混亂的結果常常導致機器過熱, 效能變慢, 甚至自動關機. 沒錯, 我們的大腦就是一個這麼複雜而又矛盾的器官, 因此解釋了我們在思想行為上為什麼常常有這麼多不合裡的狀況出現
大腦的高級指揮系統相當是位於金字塔的頂端, 負責支配人體一切的活動, 但是這個系統及其耗能與脆弱, 同時來自於底層腦的基礎運作模式不亦改變, 需要很大的力量方能將其掌握. 只要高層腦在能量不足或是受到外在影響的狀況之下, 底能腦的生存本能操控就會干擾到高層腦的主導
例如我們為什麼會暈車? 當我們在行走 (甚至是騎腳踏車) 時, 透過外周運動系統 (高級腦) 與本體感受器官 (低級腦) 的協同運作, 大腦很明確的知道是我們自身在活動. 但是當我們坐在交通工具上時, 感覺訊號輸入就完全不同了, 我們的高級腦知道我們在移動, 但是偏偏我們的低級腦並沒有接收到任何運動的命令. 兩者之間出現了資訊的落差, 身體當下判斷: 你明明雙腳沒有移動, 但是大腦接受到的訊號卻是身體在改變位置!? 唯一的可能就是你因為中毒而產生了幻覺, 所以第一時間, 爬蟲腦會讓你嘔吐, 趕快把吃進了什麼有毒的物質排出體外! 雖然對於確切暈船暈車的原因, 還有待科學家進一步確認, 但是目前這是一個普遍被接受的看法
你看看你看看, 這就是人類高級大腦所犯的低級錯誤…
人類為什麼這麼喜歡甜食? 因為大腦唯一的能量來源就是葡萄糖, 大腦只佔了人類體重的2%, 但是卻使用了我們每天五分之一以上的能量, 而且都是糖類. 這也是為什麼我們低血糖時會想睡覺, 運動甚至會昏倒. 所以當我們肚子極度飢餓時, 腦袋裡面絕對不會想著要吃清粥小菜會是水煮雞胸肉, 腦海裡面一定想的是炸雞薯條火鍋比薩之類的食物. 因為這是生物的本能, 能吃盡量吃, 誰知道下一餐是什麼時候? 因此當你吃到垃圾食物時, 多巴胺會分泌讓你覺得滿足, 而你受到獎勵了以後, 吃甜食的行為就會一再重複
這也就是為什麼有的時候我們的大餐明明已經吃撐了, 但看到飯後甜食總是可以再來一點. 因為即使胃已經被填飽了, 大腦 (高級腦) 辨識出甜食是可以讓人滿足的, 因此忽視了胃 (爬蟲腦) 發出已經吃飽了訊號, 接下來就是一球又一球的冰淇淋…
接下來談到了記憶. 我們一定會有這樣的機會: 有時一閃神, 突然忘了我是來這幹嘛的? 我幹嘛要說這一句話?
我們的長期記憶與短期記憶互相依存, 但有時也會彼此干擾. 根據研究, 我們對於短期記憶的容量有限, 一般來說當下只能同時記憶四件不同的東西, 當再有新資訊進來時, 只好把前面四項東西裡面比較不重要的清掉, 以容納新記憶進來. 這也是為什麼我們一下子處理太多事物比較容易出錯 (但是四件東西不一定要是單獨的, 我們可以把同樣性質的歸類在同一件裡面, 因此可以延展記憶能力, 這也是很多超強記憶訓練方法的原理)
同樣的道理, 長期記憶的形成需要靠大腦形成一個有序的”編碼”, 假如這個編碼越有效率, 那麼我們越不容易忘記. 就如同我們的手機或是身分證號碼, 前面一定是區域碼, 到城市碼, 最後銜接到生日之類的, 所以我們在手機電話可以自選號碼都只剩最後幾位數. 所以手機號碼是可以透露一些資訊的. 短期記憶先是儲存在海馬迴之中, 接著會被移往皮質區域. 基本上假如長期記憶形成了, 就不會被遺忘.. 可使為什麼我們就是有的時候偏偏要回憶起某些東西的時候死活都想不起來呢?
取決於記憶的方式, 也就是如何「編碼」
在”身體學習比大腦記憶更有效” 這一書裡面也強調了: 假如我們在記憶某些東西的時候, 配合上了情緒, 甚至是五感, 會讓我們的記憶更加的深刻, 同時在未來提取記憶時也會更加快速!
在這裡, 又再度提到了睡眠. 睡覺是身體休息的說法顯然已經滿足不了科學家, 因為一些勞力工作者每天回到家裡倒頭就睡, 平均是八個小時; 可是假如我們一天都宅在家, 什麼事也沒做, 基本上也會需要七到八個小時的睡眠. 因此科學家研究發現, 睡眠最重要的工作之一, 就是把短期記憶轉化為長期記憶, 這也是為什麼睡眠不足的比較健忘, 甚至熬夜, 有睡眠障礙的人較易罹患老年癡呆症的原因之一
接下來的兩個章節討論到了人類完全不同的兩個反應: 疑神疑鬼與自我感覺良好
我們為什麼會對特定的事物感到害怕? 因為它有”威脅”. 我們的爬蟲腦為了維持生存, 因此會對具有威脅的事物感到害怕. 在史前時代, 人類必須對所有可能危害生命的威脅有所警覺, 不然就無法存活.. 同時, 人類的大腦傾向於以簡單的方式運作, 只要一有風吹草動, 就會開啟自保的本能, 如此才能在嚴苛的自然環境中維持生存. 但當今社會, 真正足以影響存亡的挑戰已經大幅減少, 但是在大腦深處這一個原始的本能依舊存在: 你會先感到害怕, 以便於在腦內先行計畫出解套方案. 但是, 特別對於某些個性特別敏感的人而言, 就會感到極度的焦慮以及缺乏安全感
但是反過來說, 人們也酷愛害怕的感覺! 回憶一下看恐怖電影, 坐雲霄飛車, 或是高空跳傘之類的活動. 因為當我們安然度過了一次挑戰以後, 多巴胺會大量分泌, 進而使人上癮. 這也是為什麼有這麼多的極限運動家樂此不疲的挑戰他們的極限
如何判定智商? 從以前到現在所有的智力測驗有有局限性, 而且我們往往發現, 一般來說我們認定智商很高的天才, 很大一部分是生活白痴. 在另一個方面來說, 越有成就的人, 會因為本身知識與資訊的累積, 更加的沒有自信 (仿冒者綜合症); 而偏偏一知半解的人, 說話則會越大聲 (唐寧. 庫格效應)
人類是群體的動物, 所以假如我們可以贏得更多人的認同, 那麼也代表在團體裡面的地位更加的鞏固. 因此絕大多數人想在短期之內搏人眼球, 就會使用誇張的方式表達自己, 越多人關注 (不管好的壞的), 越能提升自我效能; 反過來說很多專家會非常低調的原因是因為他們認為人們會對於賣弄知識的人懷有敵意或是存有懷疑, 也就更加的不敢發表意見, 或是需要更多的證據來支持
我們的記憶是會被大腦所篡改的!
為了讓人類有效益的面對每一天的生活, 大腦會把過去負面或是不利的記憶淡化, 讓人振作起精神面對接下來的挑戰. 在很多關於過去記憶的實驗中, 專家發現人們口述的回憶與實際上發生的兜不攏. 這個有可能是因為在平時, 我們在當下所有接收到的訊息, 本身就會被大腦經過一定程度的加工才形成了認知, 更不用說是回憶. 每一次我們回憶起同樣一件事時, 記憶都會被竄改掉一點點, 時間一久, 回憶就會與事實越離越遠… 心理學家認為大腦自我修改記憶的原因是由於在人類的社會中, 自我價值與成就感是支持自己有勇氣探索與發展的重要原因. 所以自我感覺良好, 原來是身不由己的啊…
人類是群居動物, 孔武有力的尼安德塔人被我們智人老祖滅族的原因就是因為他們偏向單打獨鬥, 而智人則是群體合作. 為了能夠更加的與人共同生活, 我們的大腦 (特別是新腦) 偏愛讓人喜歡, 畢竟假如被群體拋下就有可能會獨自而亡. 因此, 我們天生不善於拒絕別人! 有時面對了一個天花亂墜的推銷, 我們就是會莫名其妙地購買一些我們明明不需要的東西… 因為拒絕了別人, 對方會難過 (即使我們並沒有明確意識到這一點…) . 因此有很多的銷售技巧, 就是利用了這一種反應, 特別是對於意志力比較弱的人, 格外容易上當! 也就是說, 很多時候大腦會強迫我們委屈自己, 作出妥協, 目的是讓他人喜愛我們
因為這本書裡面有一些資訊, 我在別的書中已經看過了, 原以為心得不會寫太多, 但是裡面有好多很有趣的部分值得分享, 不知不覺寫了這麼長. 可是我覺得有一點美中不足的是: 作者提出了大腦的這些矛盾之後, 並沒有告訴我們要如何來避免所產生的問題. 如果可以像 “端粒效應” 或是 “為什麼要睡覺” 這些書在每一個主題的最後, 提供讀者對應方式的具體建議就更好了
不過還是一本科普價值滿滿的書, 大大推薦~
協同效應生物 在 協同效應生物在PTT/Dcard完整相關資訊 - 星星公主 的美食出口停車場
關於「協同效應生物」標籤,搜尋引擎有相關的訊息討論: ... 正协同效应(1.40 Positive Cooperativity) | Coursera生物化学是当今生命科学领域中发展最为迅速、涉及 ... ... <看更多>
協同效應生物 在 结构生物化学_01_1.40 正协同效应(1.40 Positive ... - YouTube 的美食出口停車場
结构 生物 化学_01_1.40 正 协同效应 (1.40 Positive Cooperativity). 346 views Sep 13, 2018 结构 生物 化学 … ...more ...more. Show less. ... <看更多>
協同效應生物 在 協同效應生物在PTT/Dcard完整相關資訊 - 星星公主 的美食出口停車場
關於「協同效應生物」標籤,搜尋引擎有相關的訊息討論: ... 正协同效应(1.40 Positive Cooperativity) | Coursera生物化学是当今生命科学领域中发展最为迅速、涉及 ... ... <看更多>