AI的未來?你不能不認識的人工智慧與資料科學自動化技術—AutoML(3/10)
二、模型選擇(Model Selection)
模型選擇在建立良好的機器學習模型中有著至關重要的作用。模型選擇是從訓練資料集的候選機器學習模型集合中,選擇一個最終機器學習模型的過程。模型選擇是可以同時應用於不同類型的模型(例如,邏輯回歸、SVM、KNN等)以及配置有不同模型超參數的相同類型的模型的過程。前述之Auto-sklearn是基於scikit-learn的自動化套件,是一種自動模型選擇的工具。另外還有H2O AutoML,除了有自動模型選擇功能外,也能產生高預測性的集成學習(ensemble learning)模型,圖為H2O software stack,引用自https://docs.h2o.ai/h2o/latest-stable/h2o-docs/architecture.html
Search
svm sklearn 在 Support Vector Machines (SVM) in Scikit-learn - YouTube 的美食出口停車場
... <看更多>