曾入選2017年《亞洲達人秀》第二季決賽。 2018年7月因為一支在台北市永康公園演奏曼森·威廉斯作品〈Classical Gas〉的影片,在社群平台上觀看率破千萬,引起全球關注,同年九月更受邀參加艾倫秀。
不斷挑戰自己演奏技巧的馮羿會開始學習烏克麗麗竟然是因為手指發展遲緩,父親發現到這個狀況就開始帶著兒子學習烏克麗麗當成復健,沒想到竟然觸動了馮羿心中對於烏克麗麗的熱情。
除了自學指彈技巧finger style, 因著父親工作的緣故,馮羿在10歲那年,除了已經開始為電影公司做配樂,也在隔年數位發行了個人創作單曲〈8普拉斯〉,同首曲子也收錄在2018年4月的環太平洋烏克麗麗音樂節的合輯裡。在2018年12月發行個人首張聖誕EP《襪子在哪裡》。
小小年紀就擁有符合個人需求量身訂製的烏克麗麗以及專屬個人名字的logo,除了烏克麗麗馮羿也開始接觸吉他和電吉他。對於錄音也有相當的研究,期待在今年度自己能夠有更多的原創曲以及在錄音技術上更精進。
和同年齡的青少年一樣,馮羿是個重度星戰迷,喜歡樂高,參加艾倫秀時曾獲得一把樂高製成的烏克麗麗。
節目中會聽到馮羿精彩的演出,若是覺得意猶未盡可以上他的粉絲頁觀賞更多分享彈奏音樂的影片。
敬請期待
首播2/3週三晚上23:00-24:00
重播2/5週五早上09:00-10:00
錯過了首播和重播的朋友可以點下面的連結來聽精彩的節目內容
https://www.ic975.com/program/
【定豐資產管理有限公司贊助播出】
同時也有7部Youtube影片,追蹤數超過4萬的網紅Dd tai,也在其Youtube影片中提到,1.MOSES FANTASY(Variations on one string) 摩西幻想曲 2.CAORUCE#24 第24號隨想曲 3.I WILL ALWAYS LOVE YOU 我永遠愛你 4.CLASSICAL GAS 古典氣息 5.TOCCATA-FUGUE 托卡塔曲與賦格曲 ...
「classical gas」的推薦目錄:
- 關於classical gas 在 IC 之音 FM97.5 Facebook 的最讚貼文
- 關於classical gas 在 มติพล ตั้งมติธรรม Facebook 的最讚貼文
- 關於classical gas 在 Feng E 馮羿 Facebook 的最讚貼文
- 關於classical gas 在 Dd tai Youtube 的最讚貼文
- 關於classical gas 在 Feng E Youtube 的最讚貼文
- 關於classical gas 在 Feng E Youtube 的最佳貼文
- 關於classical gas 在 Classical Gas [Mason Williams] | Tommy Emmanuel - YouTube 的評價
- 關於classical gas 在 Mason Williams - Classical Gas - ORIGINAL STEREO VERSION 的評價
- 關於classical gas 在 Mason Williams - Classical Gas (1968) - YouTube 的評價
- 關於classical gas 在 Classical Gas Mason Williams 1968 - YouTube 的評價
- 關於classical gas 在 Glen Campbell - Classical Gas - YouTube 的評價
- 關於classical gas 在 台大指彈吉他社- 蔡旻頤-「Classical Gas」(Tommy Emmanuel) 的評價
classical gas 在 มติพล ตั้งมติธรรม Facebook 的最讚貼文
สถานะอันแปลกประหลาดของสสารถูกผลิตขึ้นในอวกาศเป็นครั้งแรก
ทีมนักวิจัยได้ประสบผลสำเร็จในการสร้างสถานะของสสารที่เรียกว่า "Bose-Einstein Condensate (BEC)" ในสภาวะไร้แรงโน้มถ่วงภายในสถานีอวกาศนานาชาติ (ISS) ได้เป็นครั้งแรก[1][2][3]
แต่ก่อนที่เราจะพูดถึง Bose-Einstein Condensate นั้น มาดูกันก่อนว่าสถานะของสสารคืออะไรกันแน่
- สถานะของสสาร
สถานะของสสารที่เราคุ้นเคยกันนั้น หรือเรียกอีกอย่างหนึ่งว่า "classical state" ประกอบขึ้นด้วยของแข็ง ของเหลว ก๊าซ และพลาสมา แต่เดิมนั้นสถานะของสสารนั้นถูกนิยามโดยคุณสมบัติที่แตกต่างกันของสสารในแต่ละสถานะ เช่น ของแข็งนั้นจะสามารถคงรูปทรงเอาไว้ได้ ในขณะที่ของเหลวนั้นจะมีปริมาตรคงที่ แต่เปลี่ยนรูปร่างไปตามภาชนะ ส่วนก๊าซนั้นจะเปลี่ยนได้ทั้งรูปร่างและปริมาตร ในขณะที่พลาสมานั้นมีลักษณะคล้ายก๊าซที่แตกตัวเป็นไอออน มีทั้งประจุบวกและประจุลบแยกออกจากกัน
อย่างไรก็ตาม นั่นเป็นเพียงกรณีของ "classical state" เพียงเท่านั้น ในความเป็นจริงแล้วการแบ่งแยกสถานะนั้นซับซ้อนกว่านั้นได้อีกมาก เช่น ในขณะที่ของแข็งนั้นจะต้องมีการเรียงตัวกันของอะตอมอย่างเป็นรูปแบบและซ้ำกัน เราจะพบว่าในแก้วและกระจกที่เราใช้กันนั้น ไม่มีการเรียงตัวกันอย่างเป็นรูปแบบ และการเรียงตัวของอะตอมในแก้วนั้นใกล้เคียงกับของเหลวเสียมากกว่า แต่ก็ไม่สามารถเคลื่อนที่ได้ เราจึงจัดแก้วเป็นสถานีอีกประเภทหนึ่ง ที่เรียกว่า "amorphous solid" และยังมี liquid crystal ที่แสดงคุณสมบัติอยู่ระหว่างของแข็งและของเหลว ที่ทำให้เกิดภาพในจอ LCD (Liquid Crystal Display) ที่เราทุกคนกำลังจ้องอ่านตัวหนังสือกันอยู่ใน ณ ตอนนี้
นอกไปจากนี้เรายังสามารถพบสถานะที่พิศดารของสสารได้อีกมากในสภาพแวดล้อมที่สุดขั้วมากๆ เช่น superfluid ที่มีความหนืดเป็นศูนย์และสามารถไหลออกจากภาชนะโดยการปีนไต่ไปตามขอบแก้วได้ หรือ degenerate matter บนดาวแคระขาวและดาวนิวตรอน ที่ถูกคงสภาพเอาไว้ได้โดยเพียงแรงกีดกันทางควอนตัมเพียงเท่านั้น
ในหมู่สถานะอันพิศดารเหล่านี้ สถานะหนึ่งที่นักวิทยาศาสตร์พยายามศึกษามาเสมอ ก็คือ "Bose-Einstein Condensate (BEC)" ซึ่งบางสื่ออาจจะเรียกว่าเป็น "สถานะที่ 5" ของสสาร[1][2] แต่ในความเป็นจริงแล้วนั้นสถานะของสสารเรียกได้ไม่จบไม่สิ้น ขึ้นอยู่กับว่าเราจะอิงตามนิยามใด
- Bose-Einstein Condensate(BEC)
ไอเดียของ BEC นั้นถูกตีพิมพ์ครั้งแรกในปี 1924 โดยนักฟิสิกส์ชาวอินเดีย Satyendra Nath Bose และ Albert Einstein จึงเป็นที่มาของชื่อ Bose-Einstein Condensate โดยหลักการก็คือหากเรามีอนุภาคชนิดเดียวกันที่มี spin เป็นเลขจำนวนเต็ม เช่น โฟตอน หรืออะตอมของธาตุที่มีจำนวนนิวตรอนและโปรตอนเท่ากัน เช่น Helium-4 อนุภาคเหล่านี้จะจัดอยู่ในอนุภาค Boson ซึ่งมีคุณสมบัติที่จะสามารถถือ quantum state เดียวกันได้
ซึ่งหากเราทำให้ "bose gas" เหล่านี้เย็นตัวลงมากๆ เสียจนอนุภาคส่วนมากจะต้องตกลงไปใน quantum state ที่มีพลังงานต่ำที่สุด เราจะพบว่าอนุภาคส่วนมากของกลุ่ม bose gas เหล่านี้นั้น จะเกิดการ "ควบแน่น" ไปอยู่ที่ quantum state เดียวกัน เกิดขึ้นมาเป็นสถานะใหม่ของสสาร
ในกลศาสตร์ควอนตัมนั้น อนุภาคทุกชนิดประกอบขึ้นจาก wavefunction ที่กำหนด quantum state ของมัน และการรบกวนและแทรกแซงกันระหว่าง wavefunction เหล่านี้นี่เอง ที่ทำให้อนุภาคมีอันตรกิริยาระหว่างกัน อย่างไรก็ตาม ในปรกติแล้วนั้น wavefunction เหล่านี้นั้นจะมีขนาดเล็กเกินกว่าอะตอมแต่ละอะตอม และไม่ใช่สิ่งที่เราสามารถสังเกตได้โดยง่าย แต่เมื่อใดก็ตามที่อะตอมของสสารมาอยู่ในรูปของ BEC แล้ว wavefunction ของทุกอะตอมใน BEC จะรวมตัวกันมาอยู่ด้วยกัน ทำให้ปรากฏการณ์ระดับจุลภาคทางควอนตัม สามารถสังเกตเห็นได้ในระดับมหัพภาค ซึ่งนอกจากจะช่วยให้เราสามารถศึกษาปรากฏการณ์ทางควอนตัมได้ดียิ่งขึ้นแล้ว เรายังเชื่อว่า BEC ยังมีความสัมพันธ์และสามารถนำเราไปสู่การเข้าใจในสสารมืดและพลังงานมืดได้ดีขึ้นอีกด้วย
- ห้องทดลองที่เย็นที่สุดในเอกภพ
การจะสร้าง BEC ได้นั้น เราจะต้องใช้อุณหภูมิที่ใกล้เคียงกับอุณหภูมิศูนย์องศาสัมบูรณ์ในระดับนาโนเคลวิน ซึ่งเนื่องจากว่าเอกภพนั้นมีอุณหภูมิ 2.7K หรือสูงกว่าอุณหภูมิที่เราต้องการหลายล้านเท่า ทำให้การศึกษา BEC กลายเป็นการสร้างห้องทดลองของสสารที่เย็นที่สุดในเอกภพไปโดยปริยาย
ในปี 1995 Eric Cornell และ Carl Wieman ได้ผลิต BEC เป็นครั้งแรกในห้องทดลองโดยแก๊สของอะตอมรูบิเดียมที่เย็นลงถึง 170 นาโนเคลวิน ต่อมาอีกไม่นาน Wolfgang Ketterle ก็สามารถสร้าง BEC จากอะตอมของโซเดียมได้สำเร็จ ทำให้ทั้งสามคนนี้ได้รับรางวัลโนเบลสาขาฟิสิกส์ไปในปี 2001 ความสำเร็จของนักฟิสิกส์เหล่านี้ทำให้ทุกวันนี้เรามีห้องวิจัยมากมายที่กำลังศึกษา BEC อยู่เป็นจำนวนมากทั่วโลก
เราสามารถทำอุณหภูมิที่เย็นขนาดนั้นได้อย่างไร? เชื่อหรือไม่ว่า วิธีที่นักวิทยาศาสตร์ใช้ในการสร้างอุณหภูมิที่เย็นขนาดนั้น ก็คือการใช้... แสงเลเซอร์???
เนื่องจาก "อุณหภูมิ" นั้นขึ้นอยู่กับระดับการสั่นสะเทือนของอะตอมในสสาร (สำหรับข้อมูลเพิ่มเติมเกี่ยวกับ "อุณหภูมิคืออะไร?" สามารถดูคำอธิบายเพิ่มเติมได้ในวีดีโอที่เคยแปะเอาไว้แล้ว[5]) อะตอมของสสารทั่วไปนั้นมีการสั่นอย่างรุนแรงอยู่ตลอดเวลา และการทำให้สสารเย็นลงใกล้เคียงกับศูนย์องศาสัมบูรณ์นั้น จึงทำได้โดยการหยุดการสั่นของอะตอมภายในสสาร
เราสามารถหยุดการสั่นของอะตอมเหล่านี้ได้ผ่านการใช้แสงเลเซอร์ แสงเลเซอร์นี้จะไป "ผลัก" อะตอมไปในทิศทางตรงกันข้ามและหยุดการเคลื่อนไหวของมันได้ หากเราใช้แสงเลเซอร์ยิงจากรอบๆ ด้านหกตัว ก็จะทำให้เราสามารถหยุดการเคลื่อนไหวของอะตอมได้ในหกทิศทาง และเมื่อเราสามารถหยุดความเคลื่อนไหวของอะตอมของโบซอนเป็นจำนวนมากให้อยู่ในบริเวณเดียวกัน wavefunction ของโบซอนเหล่านั้นก็จะ "ควบแน่น" รวมมาอยู่ในสถานะเดียวกัน กลายเป็น Bose-Einstein Condensate นั่นเอง
- ครั้งแรกในอวกาศ
อย่างไรก็ตาม ถึงแม้ว่าในทุกวันนี้เราจะมีห้องทดลองเป็นจำนวนมากบนพื้นโลกที่กำลังศึกษา BEC อยู่ แต่สถานะของ BEC นั้นเป็นสถานะที่ละเอียดอ่อนเป็นอย่างมาก และจะสลายตัวไปอย่างรวดเร็วในระดับหนึ่งในพันวินาที (millisecond) ซึ่งต้นเหตุใหญ่ๆ นั้นก็มาจากแรงโน้มถ่วงของโลกที่คอยดึง BEC ที่ลอยเคว้งอยู่ให้ตกลงสู่เบื้องล่าง ทำให้การศึกษา BEC นั้นทำได้ยากด้วยระยะเวลาอันจำกัด
ที่ผ่านมาเคยมีการพยายามย้ายห้องทดลองนี้เอาไว้ในสภาพจำลองสภาวะไร้น้ำหนัก เช่น บนเครื่องบินที่กำลังตกลง แต่ก็เป็นไปได้ด้วยความยากลำบาก ในที่สุดทางออกสุดท้ายก็คือการส่งห้องทดลองเหล่านี้ไปไว้ในอวกาศ
Cold Atom Laboratory (CAL) เป็นส่วนห้องทดลองที่ถูกส่งขึ้นไปยังสถานีอวกาศนานาชาติ (ISS) เมื่อปี 2018 โดยออกแบบมาให้สามารถผลิต BEC จากอะตอมของรูบิเดียม ด้วยระยะเวลาที่นานกว่าบนโลกเป็นอย่างมาก เนื่องจากสภาวะไร้น้ำหนักบนสถานีอวกาศนานาชาติ
และในงานวิจัยที่ตีพิมพ์ลงในวารสาร Nature เมื่อวันที่ 11 ที่ผ่านมา ทีมนักวิจัยก็ได้ยืนยันว่าสถานีอวกาศนานาชาติได้สามารถสร้าง BEC ขึ้นมาเป็นครั้งแรกภายใต้สภาวะไร้น้ำหนัก และสามารถคงรักษาสถานะของ BEC ได้นานถึงหนึ่งวินาที[6]
ซึ่งความเข้าใจที่เราจะได้จากการศึกษา BEC ภายใต้สภาวะเช่นนี้ นำไปสู่ความเป็นไปได้ที่หลากหลาย ตั้งแต่การทดสอบทฤษฎีสัมพัทธภาพทั่วไป การค้นหาพลังงานมืด คลื่นความโน้มถ่วง จนไปถึงการนำทางในอวกาศ และการค้นหาแร่ธาตุบนดวงจันทร์และวัตถุอื่นในอวกาศ
ภาพ: ISS
อ้างอิง/อ่านเพิ่มเติม:
[1] https://www.bbc.com/thai/features-53029764
[2] https://phys.org/news/2020-06-quantum-state-space.html
[3] https://coldatomlab.jpl.nasa.gov/
[4] https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate
[5] https://www.youtube.com/watch?v=2p_V8NI2HSA
[6] https://www.nature.com/articles/s41586-020-2346-1
classical gas 在 Feng E 馮羿 Facebook 的最讚貼文
Of course, I have to play Classical Gas with Tommy Emmanuel , that’s my all time wish. This is the first time I feel nervous before I step onto the stage. But I think I did a great job !
Special thanks to Gina Mendello, Chia-Wei Huang for making this happen.
跟Tommy 表演當然就要彈Classical gas,馬小弟不知道跟著YouTube 上的影片彈了幾千遍,這也是馬小弟第一次上台前覺得有壓力,下台之後全身發抖,這次他真的用盡全部的力氣了!
Camera man: Quest Lai
Ukulele: ANueNue Guitar & Ukulele
IKKS IKKS Taiwan
http://user59952.piee.pw/FTTXJ
classical gas 在 Dd tai Youtube 的最讚貼文
1.MOSES FANTASY(Variations on one string) 摩西幻想曲
2.CAORUCE#24 第24號隨想曲
3.I WILL ALWAYS LOVE YOU 我永遠愛你
4.CLASSICAL GAS 古典氣息
5.TOCCATA-FUGUE 托卡塔曲與賦格曲
6.RED HOT 紅色熱力 WITH ENCORSS 重演
classical gas 在 Feng E Youtube 的最讚貼文
Arranged by Feng E
Tuning: Normal
Tabs: https://www.musicnotes.com/sheet-music/artist/feng-e
Ukulele: aNueNue Feng E custom
If you want to support me to continue my music journey, this is my PayPal: mahua7714@gmail.com
And my Patreon is https://www.patreon.com/fenge . Thank you for your supporting.
Feng E’s fan page
https://www.facebook.com/FengEOfficial/
Feng E"s Instagram
https://www.instagram.com/fengeofficial
Feng E’s first album:
💿CD-
誠品書店 https://reurl.cc/mdM17j
博客來 https://reurl.cc/1QvRzY
五大唱片 各門市
🎧online
applemusic https://apple.co/2q2Xtf9
Spotify https://spoti.fi/2Pw2tns
KKBOX https://kkbox.fm/Na49rk
MyMysic https://www.mymusic.net.tw/ux/w/album/show/1183827
friDay http://bit.ly/31Z8MSV
classical gas 在 Feng E Youtube 的最佳貼文
Tabs: https://www.musicnotes.com/l/LTgJP
Tuning: normal
If you want to support me to continue my music journey, this is my PayPal: mahua7714@gmail.com
And my Patreon is https://www.patreon.com/fenge . Thank you for your supporting.
Feng E’s fan page
https://www.facebook.com/fengeukulele/
Feng E"s Instagram
https://www.instagram.com/feng_e_ukulele/
Feng E’s singles
https://fanlink.to/FengE_2018
classical gas 在 Classical Gas [Mason Williams] | Tommy Emmanuel - YouTube 的美食出口停車場
... <看更多>