B7 B8 謝謝是需要找積分因子的題目都可以這樣算嗎還是只是這題剛好可以 ... B9 我是沒背過找積分因子的公式,因為積分因子不唯一,所以一階ode有很多 ... ... <看更多>
「一階ode題目」的推薦目錄:
- 關於一階ode題目 在 [微方] 一階差分方程求特解(訊號類題目) - 看板Math - 批踢踢實業坊 的評價
- 關於一階ode題目 在 #工數一階微分方程integrating factors 問題 - 考試板 | Dcard 的評價
- 關於一階ode題目 在 變數可分離之ODE的解法▕ 講師:中華大學土木系呂志宗教授 的評價
- 關於一階ode題目 在 [理工] [工數] 高階線性ODE題目- 看板Grad-ProbAsk - PTT網頁版 的評價
- 關於一階ode題目 在 [微方] 一階差分方程求特解(訊號類題目) 的評價
- 關於一階ode題目 在 Facebook 網址- 艱澀的題目, 以及工程數學中有關高等微積分、高等 ... 的評價
- 關於一階ode題目 在 [心得] 交大電控中央電機正取心得| graduate 看板| PTT 網頁版 的評價
- 關於一階ode題目 在 [心得] 土木所結構組考取心得- Mo PTT 鄉公所 的評價
- 關於一階ode題目 在 工程數學題目在PTT/mobile01評價與討論 - 瑜珈皮拉提斯資訊指南 的評價
- 關於一階ode題目 在 工程數學題目在PTT/mobile01評價與討論 - 瑜珈皮拉提斯資訊指南 的評價
一階ode題目 在 變數可分離之ODE的解法▕ 講師:中華大學土木系呂志宗教授 的美食出口停車場
【教學講義】https://goo.gl/VdXuDU【有字幕】https://youtu.be/qTJzSZp_PwE若 一階 常微分方程式可表為等號左邊僅與應變數(Dependent Variable) y 有關 ... ... <看更多>
一階ode題目 在 [理工] [工數] 高階線性ODE題目- 看板Grad-ProbAsk - PTT網頁版 的美食出口停車場
... 1 1 2 2 其中大括弧絕對值呆子我是連題目都看不太懂他在問什麼......... 看完答案更是霧煞煞...... 懇請賜教2.以下哪一個微分方程式不能化簡為一階的微分方程式? ... <看更多>
一階ode題目 在 [微方] 一階差分方程求特解(訊號類題目) 的美食出口停車場
題目 y[n]-1/9y[n-2] = x[n-1]Initial conditiony[-1]= 1, y[-2] =0, x[n]=u[n]我 ... 17 F 推chemmachine: 根據zill 的ode課本(台大電機微分方程用書)裡unit 04/13 09:50. ... <看更多>
一階ode題目 在 Facebook 網址- 艱澀的題目, 以及工程數學中有關高等微積分、高等 ... 的美食出口停車場
2 一階ODE 及其應用99. 2.1 微分方程式總論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99. I. II 喻超凡叢書目錄. 2.1.1 基本定義. ... <看更多>
一階ode題目 在 [心得] 交大電控中央電機正取心得| graduate 看板| PTT 網頁版 的美食出口停車場
... 基礎,解一階ODE不外乎:變數變換,正合積分因子,線性,Bernoulli以及Riccati,準備一階ODE的重點在於題型的判別,也就是你必須很快的觀察出題目 ... ... <看更多>
一階ode題目 在 [心得] 土木所結構組考取心得- Mo PTT 鄉公所 的美食出口停車場
一階ODE 比較少考的Riccatti, Clairaut's方程式及因式分解法,二階ODE的因變數變換 ... 另外複變的部分也全部都沒跳過, 包括後面的分支點情況下的積分,題目也是每一題 ... ... <看更多>
一階ode題目 在 工程數學題目在PTT/mobile01評價與討論 - 瑜珈皮拉提斯資訊指南 的美食出口停車場
[工數筆記] 整理· 講義· 筆記目錄· CH2: 一階常微分方程式· CH3: 高階微分方程式· CH4: Laplace轉換· CH5: 常微分方程的冪級數解· CH7: Legendre 方程式. ... <看更多>
一階ode題目 在 工程數學題目在PTT/mobile01評價與討論 - 瑜珈皮拉提斯資訊指南 的美食出口停車場
[工數筆記] 整理· 講義· 筆記目錄· CH2: 一階常微分方程式· CH3: 高階微分方程式· CH4: Laplace轉換· CH5: 常微分方程的冪級數解· CH7: Legendre 方程式. ... <看更多>
一階ode題目 在 [微方] 一階差分方程求特解(訊號類題目) - 看板Math - 批踢踢實業坊 的美食出口停車場
題目
y[n]-1/9y[n-2] = x[n-1]
Initial condition
y[-1]= 1, y[-2] =0, x[n]=u[n]
我先解出 y(h)[n]=a(1/3)^n+b(-1/3)^n
然後再用 y(p)[n]=k (for n>=0)
求特解得 y(p)[n]=9/8 (for n>=0)
然後再寫 y(c)[n]={y(h)+y(p)}u[n]
接著利用題目及初始值推出以下來解y(c)的a和b
y[n]=x[n-1]+1/9y[n-2]
y[0]=x[-1]+1/9y[-2] ~~~e
y[1]=x[0]+1/9y[-1] ~~~f
y[2]=x[1]+1/9y[0 ] ~~~g
接著我應該用
(1)ef來解ab 答y(c)[n]={y(h)+y(p)}u[n]
(2)fg來解ab 答y(c)[n]={y(h)+y(p)}u[n-1]
哪一個才是對的
糾結的點在於特解必須要符合n>=0
y的complete解也是
但因為題目有一項x[n-1]
因此在帶e式的時候會出現n是小於0的x[-1]
裡要直接把他當作initial condition(u[-1]=0 )來看就好還是要用n大於0的fg式來解
(碰巧這題的答案不影響 因為在0的時候值為0,但在別題有差)
感謝
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 163.25.119.63 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1618246322.A.CB0.html
※ 編輯: ted010233 (163.25.119.63 臺灣), 04/13/2021 00:55:30
※ 編輯: ted010233 (163.25.119.63 臺灣), 04/13/2021 00:56:01
※ 編輯: ted010233 (101.12.38.195 臺灣), 04/13/2021 02:44:43
※ 編輯: ted010233 (101.12.38.195 臺灣), 04/13/2021 10:09:52
... <看更多>